1-1hit |
Masayuki MURAKAMI Hiroyasu IKEDA
Although many companies have developed robots that assist humans in the activities of daily living, safety requirements and test methods for such robots have not been established. Given the risk associated with a robot malfunctioning in the human living space, from the viewpoints of safety and EMC, it is necessary that the robot does not create a hazardous situation even when exposed to possibly severe electromagnetic disturbances in the operating environment. Thus, in immunity tests for personal care robots, the safety functions should be more rigorously tested than the other functions, and be repeatedly activated in order to ascertain that the safety functions are not lost in the presence of electromagnetic disturbances. In this paper, immunity test procedures for personal care robots are proposed that take into account functional safety requirements. A variety of test apparatuses are presented, which were built for activating the safety functions of robots, and detecting whether they were in a safe state. The practicality of the developed immunity test system is demonstrated using actual robots.