The search functionality is under construction.

Author Search Result

[Author] Md. Mustafizur RAHMAN(2hit)

1-2hit
  • A High Throughput On-Demand Routing Protocol for Multirate Ad Hoc Wireless Networks

    Md. Mustafizur RAHMAN  Choong Seon HONG  Sungwon LEE  

     
    PAPER-Network

      Vol:
    E93-B No:1
      Page(s):
    29-39

    Routing in wireless ad hoc networks is a challenging issue because it dynamically controls the network topology and determines the network performance. Most of the available protocols are based on single-rate radio networks and they use hop-count as the routing metric. There have been some efforts for multirate radios as well that use transmission-time of a packet as the routing metric. However, neither the hop-count nor the transmission-time may be a sufficient criterion for discovering a high-throughput path in a multirate wireless ad hoc network. Hop-count based routing metrics usually select a low-rate bound path whereas the transmission-time based metrics may select a path with a comparatively large number of hops. The trade-off between transmission time and effective transmission range of a data rate can be another key criterion for finding a high-throughput path in such environments. In this paper, we introduce a novel routing metric based on the efficiency of a data rate that balances the required time and covering distance by a transmission and results in increased throughput. Using the new metric, we propose an on-demand routing protocol for multirate wireless environment, dubbed MR-AODV, to discover high-throughput paths in the network. A key feature of MR-AODV is that it controls the data rate in transmitting both the data and control packets. Rate control during the route discovery phase minimizes the route request (RREQ) avalanche. We use simulations to evaluate the performance of the proposed MR-AODV protocol and results reveal significant improvements in end-to-end throughput and minimization of routing overhead.

  • IP-MAC: A Distributed MAC for Spatial Reuse in Wireless Networks

    Md. Mustafizur RAHMAN  Choong Seon HONG  Sungwon LEE  JangYeon LEE  Jin Woong CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1534-1546

    The CSMA/CA driven MAC protocols withhold packet transmissions from exposed stations when they detect carrier signal above a certain threshold. This is to avoid collisions at other receiving stations. However, this conservative scheme often exposes many stations unnecessarily, and thus minimizes the utilization of the spatial spectral resource. In this paper, we demonstrate that remote estimation of the status at the active receivers is more effective at avoiding collisions in wireless networks than the carrier sensing. We apply a new concept of the interference range, named as n-tolerant interference range, to guarantee reliable communications in the presence of n (n≥ 0) concurrent transmissions from outside the range. We design a distributed interference preventive MAC ( IP-MAC ) using the n-tolerant interference range that enables parallel accesses from the noninterfering stations for an active communication. In IP-MAC, an exposed station goes through an Interference Potentiality Check (IPC) to resolve whether it is potentially interfering or noninterfering to the active communication. During the resolve operation, IPC takes the capture effect at an active receiver into account with interfering signals from a number of possible concurrent transmissions near that receiver. The performance enhancement offered by IP-MAC is studied via simulations in different environments. Results reveal that IP-MAC significantly improves network performance in terms of throughput and delay.