The search functionality is under construction.

Author Search Result

[Author] Megumi TAKEZAWA(2hit)

1-2hit
  • Numerical Design of Matching Structures for One-Dimensional Finite Superlattices

    Hirofumi SANADA  Megumi TAKEZAWA  Hiroki MATSUZAKI  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Vol:
    E96-C No:11
      Page(s):
    1440-1443

    This paper describes how to design matching structures to improve the frequency characteristics of one-dimensional finite periodic structures. In particular, it deals with one-dimensional finite superlattices. A downhill simplex method is used to determine some of the structural parameters of the matching structure. Numerical examples show that this method is effective in improving the frequency characteristics of finite superlattices.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.