1-3hit |
Hong Kook KIM Mi Suk LEE Chul Hong KWON
A new excitation enhancement technique based on a harmonic model is proposed in this paper to improve the speech quality of low-bit-rate speech coders. This technique is employed only in the decoding process of speech coders and improves high-frequency components of excitation. We develop the procedure of harmonic model parameters estimation and harmonic generation and apply the technique to a current state-of-art low bit rate speech coder. Experiments on spectrum reading and spectrum distortion measurement show that the proposed excitation enhancement technique improves speech quality.
Yoo Rhee OH Yong Guk KIM Mina KIM Hong Kook KIM Mi Suk LEE Hyun Joo BAE
In this paper, we propose a text corpus design method for a Korean stereo super-wideband speech database. Since a small-sized text corpus for speech coding is generally required for speech coding, the corpus should be designed to comply with the pronunciation behavior of natural conversation in order to ensure efficient speech quality tests. To this end, the proposed design method utilizes a similarity measure between the phoneme distribution occurring from natural conversation and that from the designed text corpus. In order to achieve this goal, we first collect and refine text data from textbooks and websites. Next, a corpus is designed from the refined text data based on the similarity measure to compare phoneme distributions. We then construct a Korean stereo super-wideband speech (K-SW) database using the designed text corpus, where the recording environment is set to meet the conditions defined by ITU-T. Finally, the subjective quality of the K-SW database is evaluated using an ITU-T super-wideband codec in order to demonstrate that the K-SW database is useful for developing and evaluating super-wideband codecs.
Young Han LEE Deok Su KIM Hong Kook KIM Jongmo SUNG Mi Suk LEE Hyun Joo BAE
In this paper, we propose a bandwidth-scalable stereo audio coding method based on a layered structure. The proposed stereo coding method encodes super-wideband (SWB) stereo signals and is able to decode either wideband (WB) stereo signals or SWB stereo signals, depending on the network congestion. The performance of the proposed stereo coding method is then compared with that of a conventional stereo coding method that separately decodes WB or SWB stereo signals, in terms of subjective quality, algorithmic delay, and computational complexity. Experimental results show that when stereo audio signals sampled at a rate of 32 kHz are compressed to 64 kbit/s, the proposed method provides significantly better audio quality with a 64-sample shorter algorithmic delay, and comparable computational complexity.