The search functionality is under construction.

Author Search Result

[Author] Midori SUGAYA(3hit)

1-3hit
  • A Multi-Tenant Resource Management System for Multi-FPGA Systems

    Miho YAMAKURA  Ryousei TAKANO  Akram BEN AHMED  Midori SUGAYA  Hideharu AMANO  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E104-D No:12
      Page(s):
    2078-2088

    FPGA (Field Programmable Gate Array) based accelerators are attracting significant interest in cloud computing systems. Combining multi-FPGA systems with cloud computing brings a new perspective to the reconfigurable computing research. However, the multi-tenancy of a multi-FPGA system has not been fully discussed in the previous researches. In this paper, we propose a multi-tenant resource management system, named FiC-RM, for a multi-FPGA cloud system. FiC-RM provides users with a set of FPGA resources according to their requirements and allows them to exclusively access FPGA boards and the interconnection network. To achieve this, we propose a placement algorithm which is a key to efficiently share the limited resources. We demonstrate FiC-RM controls a practical scale multi-FPGA system. Moreover, Our simulation study shows that our placement algorithm achieved 3 to 4% improvement in the average resource usage and a 20-second reduction in the response time, compared to other existing naive algorithms.

  • Fogcached: A DRAM/NVMM Hybrid KVS Server for Edge Computing

    Kouki OZAWA  Takahiro HIROFUCHI  Ryousei TAKANO  Midori SUGAYA  

     
    PAPER

      Pubricized:
    2021/08/18
      Vol:
    E104-D No:12
      Page(s):
    2089-2096

    With the development of IoT devices and sensors, edge computing is leading towards new services like autonomous cars and smart cities. Low-latency data access is an essential requirement for such services, and a large-capacity cache server is needed on the edge side. However, it is not realistic to build a large capacity cache server using only DRAM because DRAM is expensive and consumes substantially large power. A hybrid main memory system is promising to address this issue, in which main memory consists of DRAM and non-volatile memory. It achieves a large capacity of main memory within the power supply capabilities of current servers. In this paper, we propose Fogcached, that is, the extension of a widely-used KVS (Key-Value Store) server program (i.e., Memcached) to exploit both DRAM and non-volatile main memory (NVMM). We used Intel Optane DCPM as NVMM for its prototype. Fogcached implements a Dual-LRU (Least Recently Used) mechanism that seamlessly extends the memory management of Memcached to hybrid main memory. Fogcached reuses the segmented LRU of Memcached to manage cached objects in DRAM, adds another segmented LRU for those in DCPM and bridges the LRUs by a mechanism to automatically replace cached objects between DRAM and DCPM. Cached objects are autonomously moved between the two memory devices according to their access frequencies. Through experiments, we confirmed that Fogcached improved the peak value of a latency distribution by about 40% compared to Memcached.

  • Fogcached-Ros: DRAM/NVMM Hybrid KVS Server with ROS Based Extension for ROS Application and SLAM Evaluation

    Koki HIGASHI  Yoichi ISHIWATA  Takeshi OHKAWA  Midori SUGAYA  

     
    PAPER

      Pubricized:
    2021/08/18
      Vol:
    E104-D No:12
      Page(s):
    2097-2108

    Recently, edge servers located closer than the cloud have become expected for the purpose of processing the large amount of sensor data generated by IoT devices such as robots. Research has been proposed to improve responsiveness as a cache server by applying KVS (Key-Value Store) to the edge as a method for obtaining high responsiveness. Above all, a hybrid-KVS server that uses both DRAM and NVMM (Non-Volatile Main Memory) devices is expected to achieve both responsiveness and reliability. However, its effectiveness has not been verified in actual applications, and its effectiveness is not clear in terms of its relationship with the cloud. The purpose of this study is to evaluate the effectiveness of hybrid-KVS servers using the SLAM (Simultaneous Localization and Mapping), which is a widely used application in robots and autonomous driving. It is appropriate for applying an edge server and requires responsiveness and reliability. SLAM is generally implemented on ROS (Robot Operating System) middleware and communicates with the server through ROS middleware. However, if we use hybrid-KVS on the edge with the SLAM and ROS, the communication could not be achieved since the message objects are different from the format expected by KVS. Therefore, in this research, we propose a mechanism to apply the ROS memory object to hybrid-KVS by designing and implementing the data serialization function to extend ROS. As a result of the proposed fogcached-ros and evaluation, we confirm the effectiveness of low API overhead, support for data used by SLAM, and low latency difference between the edge and cloud.