The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Minako KAMIYAMA(3hit)

1-3hit
  • HSI Color Space with Same Gamut of RGB Color Space

    Minako KAMIYAMA  Akira TAGUCHI  

     
    LETTER-Image

      Vol:
    E100-A No:1
      Page(s):
    341-344

    In color image processing, hue-preserving is necessary for human being. In order to preserve the hue component, the perceptual color spaces such as HSI and HSV were used for the color image processing. The Hue-Saturation-Intensity (HSI) color space is important for color image processing and many color applications are commonly based on this color space. However, the gamut of conventional HSI color space is larger than that of RGB color space. Thus, the gamut problem is often occurred after the processing intensity and saturation in the HSI color space. In this paper, a new HSI color space with completely same gamut of RGB color space is developed. The gamut problem is solved by the proposed HSI color space.

  • Hue-Preserving Color Image Processing with a High Arbitrariness in RGB Color Space

    Minako KAMIYAMA  Akira TAGUCHI  

     
    PAPER-Image Processing

      Vol:
    E100-A No:11
      Page(s):
    2256-2265

    Preserving hue is an important issue for color image processing. In order to preserve hue, color image processing is often carried out in HSI or HSV color space which is translated from RGB color space. Transforming from RGB color space to another color space and processing in this space usually generate gamut problem. We propose image enhancement methods which conserve hue and preserve the range (gamut) of the R, G, B channels in this paper. First we show an intensity processing method while preserving hue and saturation. In this method, arbitrary gray-scale transformation functions can be applied to the intensity component. Next, a saturation processing method while preserving hue and intensity is proposed. Arbitrary gray-scale transform methods can be also applied to the saturation component. Two processing methods are completely independent. Therefore, two methods are easily combined by applying two processing methods in succession. The combination method realizes the hue-preserving color image processing with a high arbitrariness without gamut problem. Furthermore, the concrete enhancement algorithm based on the proposed processing methods is proposed. Numerical results confirm our theoretical results and show that our processing algorithm performs much better than the conventional hue-preserving methods.

  • Color Conversion Formula with Saturation Correction from HSI Color Space to RGB Color Space

    Minako KAMIYAMA  Akira TAGUCHI  

     
    LETTER-Image

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:7
      Page(s):
    1000-1005

    In color image processing, preservation of hue is required. Therefore, perceptual color models such as HSI and HSV have been used. Hue-Saturation-Intensity (HSI) is a public color model, and many color applications have been made based on this model. However, the transformation from the conventional HSI (C-HSI) color space to the RGB color space after processing intensity/saturation in the C-HSI color space often generates the gamut problem, because the shape of C-HSI color space is a triangular pyramid which includes the RGB color space. When the output of intensity/saturation processing result is located in the outside of the common region of RGB color space and C-HSI color space, it is necessary to move to the RGB color space. The effective way of hue and intensity preserving saturation correction algorithm is proposed. According to the proposed saturation correction algorithm, the corrected saturation value is same as the processing result in the ideal HSI color space whose gamut same as the RGB gamut.