1-3hit |
This paper proposes a method of watermarking for digital audio signals based on adaptive phase modulation. Audio signals are usually non-stationary, i.e., their own characteristics are time-variant. The features for watermarking are usually not selected by combining the principle of variability, which affects the performance of the whole watermarking system. The proposed method embeds a watermark into an audio signal by adaptively modulating its phase with the watermark using IIR all-pass filters. The frequency location of the pole-zero of an IIR all-pass filter that characterizes the transfer function of the filter is adapted on the basis of signal power distribution on sub-bands in a magnitude spectrum domain. The pole-zero locations are adapted so that the phase modulation produces slight distortion in watermarked signals to achieve the best sound quality. The experimental results show that the proposed method could embed inaudible watermarks into various kinds of audio signals and correctly detect watermarks without the aid of original signals. A reasonable trade-off between inaudibility and robustness could be obtained by balancing the phase modulation scheme. The proposed method can embed a watermark into audio signals up to 100 bits per second with 99% accuracy and 6 bits per second with 94.3% accuracy in the cases of no attack and attacks, respectively.
Quang Minh NGO Ryo YAMAMOTO Satoshi OHZAHATA Toshihiko KATO
In this paper, we propose a new routing protocol for named data networking applied to ad hoc networks. We suppose a type of ad hoc networks that advertise versatile information in public spaces such as shopping mall and museum. In this kind of networks, information providers prepare fixed nodes, and users are equipped with mobile terminals. So, we adopt a hybrid approach where a proactive routing is used in the producer side network and a reactive routing is used in the consumer side network. Another feature of the proposed protocol is that only the name prefix advertisement is focused on in the proactive routing. The result of performance evaluation focusing on the communication overhead shows that our proposal has a moderate overhead both for routing control messages and Interest packets compared with some of conventional NDN based ad hoc routing mechanisms proposed so far.
Minh NGO Satoshi OHZAHATA Ryo YAMAMOTO Toshihiko KATO
Currently, NDN-based VANETs protocols have several problems with packet overhead of rebroadcasting, control packet, and the accuracy of next-hop selection due to the dynamic topology. To deal with these problems in this paper, we propose a robust and lightweight forwarding protocol in Vehicular ad-hoc Named Data Networking. The concept of our forwarding protocol is adopting a packet-free approach. A vehicle collects its neighbor's visual identification by a pair of cameras (front and rear) to assign a unique visual ID for each node. Based on these IDs, we construct a hop-by-hop FIB-based forwarding strategy effectively. Furthermore, the Face duplication [1] in the wireless environment causes an all-broadcast problem. We add the visual information to Face to distinguish the incoming and outgoing Face to prevent broadcast-storm and make FIB and PIT work more accurate and efficiently. The performance evaluation results focusing on the communication overhead show that our proposal has better results in overall network traffic costs and Interest satisfaction ratio than previous works.