The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Minho KIM(2hit)

1-2hit
  • Modeling of Transfer Impedance in Automotive BCI Test System with Closed-Loop Method

    Junesang LEE  Hosang LEE  Jungrae HA  Minho KIM  Sangwon YUN  Yeongsik KIM  Wansoo NAH  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/10/18
      Vol:
    E103-B No:4
      Page(s):
    405-414

    This paper presents a methodology with which to construct an equivalent simulation model of closed-loop BCI testing for a vehicle component. The proposed model comprehensively takes the transfer impedance of the test configuration into account. The methodology used in this paper relies on circuit modeling and EM modeling as well. The BCI test probes are modeled as the equivalent circuits, and the frequency-dependent losses characteristics in the probe's ferrite are derived using a PSO algorithm. The measurement environments involving the harness cable, load simulator, DUT, and ground plane are designed through three-dimensional EM simulation. The developed circuit model and EM model are completely integrated in a commercial EM simulation tool, EMC Studio of EMCoS Ltd. The simulated results are validated through comparison with measurements. The simulated and measurement results are consistent in the range of 1MHz up to 400MHz.

  • Rate Adaptation by Estimating Channel Quality in IEEE 802.11 Wireless LAN

    Minho KIM  Youngjip KIM  Chong-Ho CHOI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    243-253

    The channel characteristics of IEEE 802.11 WLAN vary with time and this can affect packet transmission performance. For achieving robust and efficient transmission, the transmission rate is controlled by exploiting the multi-rate capability of the IEEE 802.11 physical layer (PHY) to respond to the time-varying channel condition. In this paper, we propose a novel rate adaptation scheme, called RA-MCE, in which the transmitter estimates channel quality in the MAC layer to enhance throughput performance without the need to use the RTS-CTS mechanism nor to modify the IEEE 802.11 standard. RA-MCE adaptively controls the transmission rate according to the estimated channel quality by the MAC layer channel quality estimator (MCE) that uses only local MAC layer measurements. Through extensive simulations, we validate the accuracy of MCE and evaluate the performance of RA-MCE to show that it achieves higher throughput performance than other rate adaptation schemes under various circumstances.