The search functionality is under construction.

Author Search Result

[Author] Minoru SUZUKI(3hit)

1-3hit
  • Characteristics of High-Tc Superconducting Flux Flow Transistors

    Kazunori MIYAHARA  Koji TSURU  Shugo KUBO  Minoru SUZUKI  

     
    INVITED PAPER-Three terminal devices and Josephson Junctions

      Vol:
    E78-C No:5
      Page(s):
    466-470

    High-Tc superconducting flux flow transistors were fabricated with co-evaporated thin films of YBaCuO. The vortex flow channels (2 µm in width) and the device patterns were formed by Ar ion milling. The three-terminal characteristics, vortex flow characteristics, transresistance, and current gain of the device were measured. The AC input-output characteristics of the device with an Au load resistor were also measured. The measured flow voltage, transresistance and current gain are discussed in relation to these AC input-output measurements.

  • Properties of Intrinsic Josephson Junctions in Bi2Sr2CaCu2O8+δ Single Crystals

    Minoru SUZUKI  Shin-ichi KARIMOTO  

     
    INVITED PAPER-High-Tc Junction Technology

      Vol:
    E81-C No:10
      Page(s):
    1518-1525

    We describe several properties of very thin stacks of 10 to 20 intrinsic Josephson junctions fabricated on the surface of Bi2Sr2CaCu2O8+δ single crystals. We show that the Joule heating is significantly reduced in these stacks and that the gap structure is clearly observable in the quasiparticle current-voltage (I-V) characteristics. The I-V curves are characterized by a large subgap conductance and a significant gap suppression due to the injection of quasiparticle current. It is found that the IcRn product of these intrinsic Josephson junction stacks is significantly small compared with that expected from the BCS theory. It is also found that there is a tendency that IcRn decreases with increasing c-axis resistivity. Both Ic and the gap voltage exhibit unsaturated temperature dependence at low temperatures. The behavior presents a sharp contrast to that of Josephson junctions made of conventional superconductors. The characteristics are discussed in relation to the d-wave symmetry of the order parameter.

  • Strato-Mesospheric Ozone Monitoring System Using an SIS Mixer

    Hideo SUZUKI  Minoru SUZUKI  Hideo OGAWA  

     
    INVITED PAPER-Analog applications

      Vol:
    E79-C No:9
      Page(s):
    1219-1227

    We have developed a strato-mesospheric ozone monitoring system with a low noise SIS mixer, which receives 110.836 GHz millimeter-wave emission due to the rotational transition of ozone molecules (J=61,560,6). The system is completely standalone. We derived the altitude profile of ozone density between 25 km and 80 km from the observed spectrum. The receiver noise temperature was as low as 17 K (DSB), so that the altitude profile could be obtained every 3-10 minutes. The monitoring system can operate continuously over one year without any maintenance work, because it utilizes a 4 K closed cycle helium refrigerator and reliable Nb/AIOx/Nb SIS junctions. We used two acousto-optical spectrometers (AOSs) as real-time spectrometers because of their high resolution and simple construction. In an up-to-date system, one AOS would have a band-width of 65 MHz and the other, a band-width of 250 MHz with resolutions of 40 kHz and 250 kHz, respectively. A computer controls the entire system and is also used to analyze measured data. In this paper, we present the principles of system operation, the latest performance and the construction of the system, and some observed data.