The search functionality is under construction.

Author Search Result

[Author] Mitsutaka ITOH(3hit)

1-3hit
  • Intelligent High-Interaction Web Honeypots Based on URL Conversion Scheme

    Takeshi YAGI  Naoto TANIMOTO  Takeo HARIU  Mitsutaka ITOH  

     
    PAPER-Internet

      Vol:
    E94-B No:5
      Page(s):
    1339-1347

    Vulnerabilities in web applications expose computer networks to security threats. For example, attackers use a large number of normal user websites as hopping sites, which are illegally operated using malware distributed by abusing vulnerabilities in web applications on these websites, for attacking other websites and user terminals. Thus, the security threats, resulting from vulnerabilities in web applications prevent service providers from constructing secure networking environments. To protect websites from attacks based on the vulnerabilities of web applications, security vendors and service providers collect attack information using web honeypots, which masquerade as vulnerable systems. To collect all accesses resulting from attacks that include further network attacks by malware, such as downloaders, vendors and providers use high-interaction web honeypots, which are composed of vulnerable systems with surveillance functions. However, conventional high-interaction web honeypots can collect only limited information and malware from attacks, whose paths in the destination URLs do not match the path structure of the web honeypot since these attacks are failures. To solve this problem, we propose a scheme in which the destination URLs of these attacks are corrected by determining the correct path from the path structure of the web honeypot. Our Internet investigation revealed that 97% of attacks are failures. However, we confirmed that approximately 50% of these attacks will succeed with our proposed scheme. We can use much more information with this scheme to protect websites than with conventional high-interaction web honeypots because we can collect complete information and malware from these attacks.

  • Design of Provider-Provisioned Website Protection Scheme against Malware Distribution

    Takeshi YAGI  Naoto TANIMOTO  Takeo HARIU  Mitsutaka ITOH  

     
    PAPER

      Vol:
    E93-B No:5
      Page(s):
    1122-1130

    Vulnerabilities in web applications expose computer networks to security threats, and many websites are used by attackers as hopping sites to attack other websites and user terminals. These incidents prevent service providers from constructing secure networking environments. To protect websites from attacks exploiting vulnerabilities in web applications, service providers use web application firewalls (WAFs). WAFs filter accesses from attackers by using signatures, which are generated based on the exploit codes of previous attacks. However, WAFs cannot filter unknown attacks because the signatures cannot reflect new types of attacks. In service provider environments, the number of exploit codes has recently increased rapidly because of the spread of vulnerable web applications that have been developed through cloud computing. Thus, generating signatures for all exploit codes is difficult. To solve these problems, our proposed scheme detects and filters malware downloads that are sent from websites which have already received exploit codes. In addition, to collect information for detecting malware downloads, web honeypots, which automatically extract the communication records of exploit codes, are used. According to the results of experiments using a prototype, our scheme can filter attacks automatically so that service providers can provide secure and cost-effective network environments.

  • Design and Implementation of High Interaction Client Honeypot for Drive-by-Download Attacks

    Mitsuaki AKIYAMA  Makoto IWAMURA  Yuhei KAWAKOYA  Kazufumi AOKI  Mitsutaka ITOH  

     
    PAPER

      Vol:
    E93-B No:5
      Page(s):
    1131-1139

    Nowadays, the number of web-browser targeted attacks that lead users to adversaries' web sites and exploit web browser vulnerabilities is increasing, and a clarification of their methods and countermeasures is urgently needed. In this paper, we introduce the design and implementation of a new client honeypot for drive-by-download attacks that has the capacity to detect and investigate a variety of malicious web sites. On the basis of the problems of existing client honeypots, we enumerate the requirements of a client honeypot: 1) detection accuracy and variety, 2) collection variety, 3) performance efficiency, and 4) safety and stability. We improve our system with regard to these requirements. The key features of our developed system are stepwise detection focusing on exploit phases, multiple crawler processing, tracking of malware distribution networks, and malware infection prevention. Our evaluation of our developed system in a laboratory experiment and field experiment indicated that its detection variety and crawling performance are higher than those of existing client honeypots. In addition, our system is able to collect information for countermeasures and is secure and stable for continuous operation. We conclude that our system can investigate malicious web sites comprehensively and support countermeasures.