The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Mohammad NURUL HUDA(2hit)

1-2hit
  • Canonicalization of Feature Parameters for Robust Speech Recognition Based on Distinctive Phonetic Feature (DPF) Vectors

    Mohammad NURUL HUDA  Muhammad GHULAM  Takashi FUKUDA  Kouichi KATSURADA  Tsuneo NITTA  

     
    PAPER-Feature Extraction

      Vol:
    E91-D No:3
      Page(s):
    488-498

    This paper describes a robust automatic speech recognition (ASR) system with less computation. Acoustic models of a hidden Markov model (HMM)-based classifier include various types of hidden factors such as speaker-specific characteristics, coarticulation, and an acoustic environment, etc. If there exists a canonicalization process that can recover the degraded margin of acoustic likelihoods between correct phonemes and other ones caused by hidden factors, the robustness of ASR systems can be improved. In this paper, we introduce a canonicalization method that is composed of multiple distinctive phonetic feature (DPF) extractors corresponding to each hidden factor canonicalization, and a DPF selector which selects an optimum DPF vector as an input of the HMM-based classifier. The proposed method resolves gender factors and speaker variability, and eliminates noise factors by applying the canonicalzation based on the DPF extractors and two-stage Wiener filtering. In the experiment on AURORA-2J, the proposed method provides higher word accuracy under clean training and significant improvement of word accuracy in low signal-to-noise ratio (SNR) under multi-condition training compared to a standard ASR system with mel frequency ceptral coeffient (MFCC) parameters. Moreover, the proposed method requires a reduced, two-fifth, Gaussian mixture components and less memory to achieve accurate ASR.

  • Distinctive Phonetic Feature (DPF) Extraction Based on MLNs and Inhibition/Enhancement Network

    Mohammad Nurul HUDA  Hiroaki KAWASHIMA  Tsuneo NITTA  

     
    PAPER-Speech and Hearing

      Vol:
    E92-D No:4
      Page(s):
    671-680

    This paper describes a distinctive phonetic feature (DPF) extraction method for use in a phoneme recognition system; our method has a low computation cost. This method comprises three stages. The first stage uses two multilayer neural networks (MLNs): MLNLF-DPF, which maps continuous acoustic features, or local features (LFs), onto discrete DPF features, and MLNDyn, which constrains the DPF context at the phoneme boundaries. The second stage incorporates inhibition/enhancement (In/En) functionalities to discriminate whether the DPF dynamic patterns of trajectories are convex or concave, where convex patterns are enhanced and concave patterns are inhibited. The third stage decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure before feeding them into a hidden Markov model (HMM)-based classifier. In an experiment on Japanese Newspaper Article Sentences (JNAS) utterances, the proposed feature extractor, which incorporates two MLNs and an In/En network, was found to provide a higher phoneme correct rate with fewer mixture components in the HMMs.