1-2hit |
Mohammad ZALFANY URFIANTO Tsuyoshi ISSHIKI Arif ULLAH KHAN Dongju LI Hiroaki KUNIEDA
A simple extension used to assist the decomposition of task-level concurrency within C programs is presented in this paper. The concurrency decomposition is meant to be used as the point of entry for Multiprocessor System-on-Chips (MPSoC) architectures' design-flow. Our methodology allows the (re)use of readily available reference C programs and enables easy and rapid exploration for various alternatives of task partitioning strategies; a crucial task that greatly influences the overall quality of the designed MPSoC. A test case using a JPEG encoder application has been performed and the results are presented in this paper.
Mohammad ZALFANY URFIANTO Tsuyoshi ISSHIKI Arif ULLAH KHAN Dongju LI Hiroaki KUNIEDA
This paper presents a Multiprocessor System-on-Chips (MPSoC) architecture used as an execution platform for the new C-language based MPSoC design framework we are currently developing. The MPSoC architecture is based on an existing SoC platform with a commercial RISC core acting as the host CPU. We extend the existing SoC with a multiprocessor-array block that is used as the main engine to run parallel applications modeled in our design framework. Utilizing several optimizations provided by our compiler, an efficient inter-communication between processing elements with minimum overhead is implemented. A host-interface is designed to integrate the existing RISC core to the multiprocessor-array. The experimental results show that an efficacious integration is achieved, proving that the designed communication module can be used to efficiently incorporate off-the-shelf processors as a processing element for MPSoC architectures designed using our framework.