The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Mon-Chau SHIE(2hit)

1-2hit
  • Fast, Robust Block Motion Estimation Using Simulated Annealing

    Mon-Chau SHIE  Wen-Hsien FANG  Kuo-Jui HUNG  Feipei LAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E83-A No:1
      Page(s):
    121-127

    This paper presents a simulated annealing (SA)-based algorithm for fast and robust block motion estimation. To reduce computational complexity, the existing fast search algorithms move iteratively toward the winning point based only on a finite set of checking points in every stage. Despite the efficiency of these algorithms, the search process is easily trapped into local minima, especially for high activity image sequences. To overcome this difficulty, the new algorithm uses two sets of checking points in every search stage and invokes the SA to choose the appropriate one. The employment of the SA provides the search a mechanism of being able to move out of local minima so that the new algorithm is less susceptible to such a dilemma. In addition, two schemes are employed to further enhance the performance of the algorithm. First, a set of initial checking points which exploit high correlations among the motion vectors of the temporally and spatially adjacent blocks are used. Second, an alternating search strategy is addressed to visit more points without increasing computations. Simulation results show that the new algorithm offers superior performance with lower computational complexity compared to previous works in various scenarios.

  • Quality and Power Efficient Architecture for the Discrete Cosine Transform

    Chi-Chia SUNG  Shanq-Jang RUAN  Bo-Yao LIN  Mon-Chau SHIE  

     
    PAPER-VLSI Architecture

      Vol:
    E88-A No:12
      Page(s):
    3500-3507

    In recent years, the demand for multimedia mobile battery-operated devices has created a need for low power implementation of video compression. Many compression standards require the discrete cosine transform (DCT) function to perform image/video compression. For this reason, low power DCT design has become more and more important in today's image/video processing. This paper presents a new power-efficient Hybrid DCT architecture which combines Loeffler DCT and binDCT in terms of special property on luminance and chrominance difference. We use Synopsys PrimePower to estimate the power consumption in a TSMC 0.25-µm technology. Besides, we also adopt a novel quality assessment method based on structural distortion measurement to measure the quality instead of peak signal to noise rations (PSNR) and mean squared error (MSE). It is concluded that our Hybrid DCT offers similar quality performance to the Loeffler, and leads to 25% power consumption and 27% chip area savings.