1-2hit |
Motohiro TAKAGI Akito SAKURAI Masafumi HAGIWARA
Current image quality assessment (IQA) methods require the original images for evaluation. However, recently, IQA methods that use machine learning have been proposed. These methods learn the relationship between the distorted image and the image quality automatically. In this paper, we propose an IQA method based on deep learning that does not require a reference image. We show that a convolutional neural network with distortion prediction and fixed filters improves the IQA accuracy.
Motohiro TAKAGI Kazuya HAYASE Masaki KITAHARA Jun SHIMAMURA
This paper proposes a change detection method for buildings based on convolutional neural networks. The proposed method detects building changes from pairs of optical aerial images and past map information concerning buildings. Using high-resolution image pair and past map information seamlessly, the proposed method can capture the building areas more precisely compared to a conventional method. Our experimental results show that the proposed method outperforms the conventional change detection method that uses optical aerial images to detect building changes.