The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Nanami KATAYAMA(1hit)

1-1hit
  • Formal Verification-Based Redundancy Identification of Transition Faults with Broadside Scan Tests

    Hiroshi IWATA  Nanami KATAYAMA  Ken'ichi YAMAGUCHI  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1182-1189

    In accordance with Moore's law, recent design issues include shortening of time-to-market and detection of delay faults. Several studies with respect to formal techniques have examined the first issue. Using the equivalence checking, it is possible to identify whether large circuits are equivalent or not in a practical time frame. With respect to the latter issue, it is difficult to achieve 100% fault efficiency even for transition faults in full scan designs. This study involved proposing a redundant transition fault identification method using equivalence checking. The main concept of the proposed algorithm involved combining the following two known techniques, 1. modeling of a transition fault as a stuck-at fault with temporal expansion and 2. detection of a stuck-at fault by using equivalence checking tools. The experimental results indicated that the proposed redundant identification method using a formal approach achieved 100% fault efficiency for all benchmark circuits in a practical time even if a commercial ATPG tool was unable to achieve 100% fault efficiency for several circuits.