The search functionality is under construction.

Author Search Result

[Author] Naoki HASHIMOTO(2hit)

1-2hit
  • Immersive Multi-Projector Display on Hybrid Screens with Human-Scale Haptic Interface

    Seungzoo JEONG  Naoki HASHIMOTO  Makoto SATO  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    888-893

    Many immersive displays developed in previous researches are strongly influenced by the design concept of the CAVE, which is the origin of the immersive displays. In the view of human-scale interactive system for virtual environment (VE), the existing immersive systems are not enough to use the potential of a human sense further extent. The displays require more complicated structure for flexible extension, and are more restrictive to user's movement. Therefore we propose a novel multi-projector display for immersive VE with haptic interface for more flexible and dynamic interaction. The display part of our system named "D-vision" has a hybrid curved screen which consist of compound prototype with flat and curve screen. This renders images seamlessly in real time, and generates high-quality stereovision by PC cluster and two-pass technology. Furthermore a human-scale string-based haptic device will integrate with the D-vision for more interactive and immersive VE. In this paper, we show an overview of the D-vision and technologies used for the human-scale haptic interface.

  • Development of Autocloned Photonic Crystal Devices

    Takayuki KAWASHIMA  Yoshihiro SASAKI  Kenta MIURA  Naoki HASHIMOTO  Akiyoshi BABA  Hiroyuki OHKUBO  Yasuo OHTERA  Takashi SATO  Wataru ISHIKAWA  Tsutomu AOYAMA  Shojiro KAWAKAMI  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    283-290

    Autocloning is a method for fabricating multi-dimensional structures by stacking the corrugated films while keeping the shape. Its productivity, robustness against perturbation, and flexibility regarding materials and lattice types make autocloning suitable for mass production of photonic crystals. Therefore we aim to industrialize autocloned photonic crystals. Recently, we are starting to market polarization beam splitters for optical telecommunication by using 2D photonic crystals, and are developing some devices using the splitters, such as isolators or beam combiners. The applications of the splitters are also extending to multi-section type of devices and to visible range devices. Meanwhile, development of optical integrated circuits by utilizing autocloned photonic crystals is in progress. Low loss propagation and some functions have been demonstrated.