1-2hit |
Kentaro KAWAKAMI Kouji KURIHARA Masafumi YAMAZAKI Takumi HONDA Naoto FUKUMOTO
To accelerate deep learning (DL) processes on the supercomputer Fugaku, the authors have ported and optimized oneDNN for Fugaku's CPU, the Fujitsu A64FX. oneDNN is an open-source DL processing library developed by Intel for the x86_64 architecture. The A64FX CPU is based on the Armv8-A architecture. oneDNN dynamically creates the execution code for the computation kernels, which are implemented at the granularity of x86_64 instructions using Xbyak, the Just-In-Time (JIT) assembler for x86_64 architecture. To port oneDNN to A64FX, it must be rewritten into Armv8-A instructions using Xbyak_aarch64, the JIT assembler for the Armv8-A architecture. This is challenging because the number of steps to be rewritten exceeds several tens of thousands of lines. This study presents the Xbyak_translator_aarch64. Xbyak_translator_aarch64 is a binary translator that at runtime converts dynamically produced executable codes for the x86_64 architecture into executable codes for the Armv8-A architecture. Xbyak_translator_aarch64 eliminates the need to rewrite the source code for porting oneDNN to A64FX and allows us to port oneDNN to A64FX quickly.
Koichi SHIRAHATA Amir HADERBACHE Naoto FUKUMOTO Kohta NAKASHIMA
Scalability of distributed DNN training can be limited by slowdown of specific processes due to unexpected hardware failures. We propose a dynamic process exclusion technique so that training throughput is maximized. Our evaluation using 32 processes with ResNet-50 shows that our proposed technique reduces slowdown by 12.5% to 50% without accuracy loss through excluding the slow processes.