1-3hit |
Heun-Soo LEE Naoyuki KARASAWA Keisuke NAKANO Masakazu SENGOKU
This paper discusses the teletraffic characteristics of cellular systems using Dynamic Channel Assignment. In general, it is difficult to exactly and theoretically analyze the teletraffic characteristics of Dynamic Channel Assignment. Also, it is not easy to theoretically evaluate influence of mobility on the traffic characteristics. This paper proposes approximate techniques to analyze teletraffic characteristics of Dynamic Channel Assignment considering mobility. The proposed techniques are based on Clique Packing approximation.
Keisuke NAKANO Naoyuki KARASAWA Masakazu SENGOKU Shoji SHINODA Takeo ABE
This paper describes communication traffic characteristics in cellular systems employing the concept of reuse partitioning and Dynamic Channel Assignment. Such systems hava a problem of the spatial unbalance of blocking probability. The objective of this paper is overcoming this problem. To accomplish this objective, we use a method for analyzing communication traffic characteristics. We also show results on traffic characteristics in the systems.
Naoyuki KARASAWA Kazuyuki MIYAKITA Yuto INAGAWA Kodai KOBAYASHI Hiroshi TAMURA Keisuke NAKANO
Information floating (IF) permits mobile nodes to transmit information to other nodes by direct wireless communication only in transmittable areas (TAs), thus avoiding unneeded and inefficient information distribution to irrelevant areas, which is a problem with the so-called epidemic communication used in delay tolerant networks. In this paper, we propose applying IF to sensor networking to find and share available routes in disaster situations. In this proposal, IF gathers and shares information without any assistance from gateways, which is normally required for conventional wireless sensor networks. A performance evaluation based on computer simulation results is presented. Furthermore, we demonstrate that the proposed method is effective by highlighting its advantageous properties and directly comparing it with a method based on epidemic communication. Our findings suggest that the proposed method is a promising step toward more effective countermeasures against restricted access in disaster zones.