The search functionality is under construction.

Author Search Result

[Author] Naoyuki TOKUDA(4hit)

1-4hit
  • Probabilistic Information Retrieval Method Based on Differential Latent Semantic Index Space

    Liang CHEN  Naoyuki TOKUDA  Akira NAGAI  

     
    LETTER-Artificial Intelligence, Cognitive Science

      Vol:
    E84-D No:7
      Page(s):
    910-914

    To improve the unstable performance of the traditional keyword-based search engine due to ambiguities of a natural language such as synonymy and /or polysemy, we have developed a new advanced DLSI (differential latent semantic index) space based probabilistic information retrieval system. The new method exploits a most likelihood posteriori function providing a measure of reliability in retrieving a document in the database having a closest match with another document of a query. Our simple experiment gives a supporting evidence for the validity of the theory, which is capable of capturing the intricate variability in word usage contributing to a more robust context contingent search engine.

  • A Model-Based Active Landmarks Tracking Method

    Ronghua YAN  Naoyuki TOKUDA  Juichi MIYAMICHI  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:10
      Page(s):
    1477-1482

    Unlike the time-consuming contour tracking method of snakes [5] which requires a considerable number of iterated computations before contours are successfully tracked down, we present a faster and accurate model-based landmarks" tracking method where a single iteration of the dynamic programming is sufficient to obtain a local minimum to an integral measure of the elastic and the image energy functionals. The key lies in choosing a relatively small number of salient land-marks", or features of objects, rather than their contours as a target of tracking within the image structure. The landmarks comprising singular points along the model contours are tracked down within the image structure all inside restricted search areas of 41 41 pixels whose respective locations in image structure are dictated by their locations in the model. A Manhattan distance and a template corner detection function of Singh and Shneier [7] are used as elastic energy and image energy respectively in the algorithm. A first approximation to the image contour is obtained in our method by applying the thin-plate spline transformation of Bookstein [2] using these landmarks as fixed points of the transformation which is capable of preserving a global shape information of the model including the relative configuration of landmarks and consequently surrounding contours of the model in the image structure. The actual image contours are further tracked down by applying an active edge tracker using now simplified line search segments so that individual differences persisting between the mapped model contour are substantially eliminated. We have applied our method tentatively to portraits of a class album to demonstrate the effectiveness of the method. Our experiments convincingly show that using only about 11 feature points our method provides not only a much improved computational complexity requiring only 0.94sec. in CPU time by SGI's indigo2 but also more accurate shape representations than those obtained by the snakes methods. The method is powerful in a problem domain where the model-based approach is applicable, possibly allowing real time processing because a most time consuming algorithm of corner template evaluation can be easily implemented by parallel processing firmware.

  • A Constructive Compound Neural Networks. II Application to Artificial Life in a Competitive Environment

    Jianjun YAN  Naoyuki TOKUDA  Juichi MIYAMICHI  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E83-D No:4
      Page(s):
    845-856

    We have developed a new efficient neural network-based algorithm for Alife application in a competitive world whereby the effects of interactions among organisms are evaluated in a weak form by exploiting the position of nearest food elements into consideration but not the positions of the other competing organisms. Two online learning algorithms, an instructive ASL (adaptive supervised learning) and an evaluative feedback-oriented RL (reinforcement learning) algorithm developed have been tested in simulating Alife environments with various neural network algorithms. The constructive compound neural network algorithm FuzGa guided by the ASL learning algorithm has proved to be most efficient among the methods experimented including the classical constructive cascaded CasCor algorithm of [18],[19] and the fixed non-constructive fuzzy neural networks. Adopting an adaptively selected best sequence of feedback action period Δα which we have found to be a decisive parameter in improving the network efficiency, the ASL-guided FuzGa had a performance of an averaged fitness value of 541.8 (standard deviation 48.8) as compared with 500(53.8) for ASL-guided CasCor and 489.2 (39.7) for RL-guided FuzGa. Our FuzGa algorithm has also outperformed the CasCor in time complexity by 31.1%. We have elucidated how the dimensionless parameter food availability FA representing the intensity of interactions among the organisms relates to a best sequence of the feedback action period Δα and an optimal number of hidden neurons for the given configuration of the networks. We confirm that the present solution successfully evaluates the effect of interactions at a larger FA, reducing to an isolated solution at a lower value of FA. The simulation is carried out by thread functions of Java by ensuring the randomness of individual activities.

  • A New Constructive Compound Neural Networks Using Fuzzy Logic and Genetic Algorithm 1 Application to Artificial Life

    Jianjun YAN  Naoyuki TOKUDA  Juichi MIYAMICHI  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:12
      Page(s):
    1507-1516

    This paper presents a new compound constructive algorithm of neural networks whereby the fuzzy logic technique is explored as an efficient learning algorithm to implement an optimal network construction from an initial simple 3-layer network while the genetic algorithm is used to help design an improved network by evolutions. Numerical simulations on artificial life demonstrate that compared with the existing network design algorithms such as the constructive algorithms, the pruning algorithms and the fixed, static architecture algorithm, the present algorithm, called FuzGa, is efficient in both time complexity and network performance. The improved time complexity comes from the sufficiently small 3 layer design of neural networks and the genetic algorithm adopted partly because the relatively small number of layers facilitates an utilization of an efficient steepest descent method in narrowing down the solution space of fuzzy logic and partly because trappings into local minima can be avoided by genetic algorithm, contributing to considerable saving in time in the processing of network learning and connection. Compared with 54. 8 minutes of MLPs with 65 hidden neurons, 63. 1 minutes of FlexNet or 96. 0 minutes of Pruning, our simulation results on artificial life show that the CPU time of the present method reaching the target fitness value of 100 food elements eaten for the present FuzGa has improved to 42. 3 minutes by SUN's SPARCstation-10 of SuperSPARC 40 MHz machine for example. The role of hidden neurons is elucidated in improving the performance level of the neural networks of the various schemes developed for artificial life applications. The effect of population size on the performance level of the present FuzGa is also elucidated.