1-1hit |
Nii L. SOWAH Qingbo WU Fanman MENG Liangzhi TANG Yinan LIU Linfeng XU
In this paper, we improve upon the accuracy of existing tracklet generation methods by repairing tracklets based on their quality evaluation and detection propagation. Starting from object detections, we generate tracklets using three existing methods. Then we perform co-tracklet quality evaluation to score each tracklet and filtered out good tracklet based on their scores. A detection propagation method is designed to transfer the detections in the good tracklets to the bad ones so as to repair bad tracklets. The tracklet quality evaluation in our method is implemented by intra-tracklet detection consistency and inter-tracklet detection completeness. Two propagation methods; global propagation and local propagation are defined to achieve more accurate tracklet propagation. We demonstrate the effectiveness of the proposed method on the MOT 15 dataset