The search functionality is under construction.

Author Search Result

[Author] Nobuhiro SUGANO(4hit)

1-4hit
  • Transfer Function Matrix Measurement of AWG Multi/Demulti-Plexers

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Photonic WDM Devices

      Vol:
    E82-C No:2
      Page(s):
    349-353

    Wavelength Division Multiplex (WDM) photonic networks are expected as key for global communication infrastructure. The accurate measurement methods for AWG-MUX/DMUX are desirable for WDM network design. We measured a transfer function matrix of an AWG-MUX to find that polarization mode dispersion (PMD) and polarization dependent loss (PDL) shows the bandpass characteristics, which may limit the maximum size and the bit rate of the system. These bandpass characteristics of PMD and PDL are reproduced by a simple AWG-MUX model: The phase constant difference of 0.5% between orthogonal modes in arrayed waveguides is sufficient to obtain the measured passband characteristics of PMD and PDL. We find phase distribution difference between two orthogonal modes in the arrayed waveguide grating gives arise to complex PMD.

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    344-348

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    292-296

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

  • Transfer Function Matrix Measurement of AWG Multi/Demulti-Plexers

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Photonic WDM Devices

      Vol:
    E82-B No:2
      Page(s):
    401-405

    Wavelength Division Multiplex (WDM) photonic networks are expected as key for global communication infrastructure. The accurate measurement methods for AWG-MUX/DMUX are desirable for WDM network design. We measured a transfer function matrix of an AWG-MUX to find that polarization mode dispersion (PMD) and polarization dependent loss (PDL) shows the bandpass characteristics, which may limit the maximum size and the bit rate of the system. These bandpass characteristics of PMD and PDL are reproduced by a simple AWG-MUX model: The phase constant difference of 0.5% between orthogonal modes in arrayed waveguides is sufficient to obtain the measured passband characteristics of PMD and PDL. We find phase distribution difference between two orthogonal modes in the arrayed waveguide grating gives arise to complex PMD.