1-5hit |
Yoichi OKUNO Taikei SUYAMA Rui HU Sailing HE Toyonori MATSUDA
Excitation of plasmons on the surface of a metal grating placed in planar or conical mounting is investigated in detail. Most of the results of numerical computations are compared with experimental data. When a TM wave illuminates a metal grating, total or partial absorption of incident light occurs at angles of incidence at which the plasmon surface waves are excited. In planar mounting the absorption is generally strong and nearly total absorption is observed. While in conical mounting, it is not so strong as that in the planar mounting case and a considerable amount of incident power is reflected. This, however, is accompanied by enhanced TM-TE mode conversion and the greater part of the reflected wave is in the TE polarization. The reciprocal of the TM-wave efficiency, hence, is a practical measure in finding the angles of incidence at which the plasmons are excited. Because the angles are sensitive functions of the refractive index of a material over the grating surface, this phenomenon can be used as an index sensor.
Michinari SHIMODA Toyonori MATSUDA Kazunori MATSUO Yoshitada IYAMA
The cause-and-effect relation between plasmon-resonance absorption and surface wave in a sinusoidal metal grating is investigated. By introducing an equivalent impedance model, similar to an equivalent circuit on an electric circuit, which is an impedance boundary value problem on the fictitious surface over the grating, we estimate the surface wave from the eigen field of the model by using the resonance property of the scattered field. Through numerical examples, we illustrate that the absorption in the grating occurs in the condition of exciting the surface wave along the model, and the real part of the surface impedance is negative on about half part of the fictitious surface in the condition.
Michinari SHIMODA Ryuichi IWAKI Masazumi MIYOSHI Toyonori MATSUDA
The diffraction of a plane electromagnetic wave by an impedance wedge whose boundary is described in terms of the skew coordinate systems is treated by using the Wiener-Hopf technique. The problem is formulated in terms of the simultaneous Wiener-Hopf equations, which are then solved by using a factorization and decomposition procedure and introducing appropriate functions to satisfy the edge condition. The exact solution is expressed through the Maliuzhinets functions. By deforming the integration path of the Fourier inverse transform, which expresses the scattered field, the expressions of the reflected field, diffracted field and the surface wave are obtained. The numerical examples for these fields are given and the characteristics of the surface wave are discussed.
Mitsuhiro HATTORI Takato HIRANO Takashi ITO Nori MATSUDA Takumi MORI Yusuke SAKAI Kazuo OHTA
We propose a new hidden vector encryption (HVE) scheme that we call a ciphertext-policy delegatable hidden vector encryption (CP-dHVE) scheme. Several HVE schemes have been proposed and their properties have been analyzed extensively. Nonetheless, the definition of the HVE has been left unchanged. We therefore reconsider it, and point out that the conventional HVE should be categorized as the key-policy HVE, because the vectors corresponding to the secret keys can contain wildcards (which specify an access policy) whereas those corresponding to the ciphertexts cannot contain them. We then formalize its dual concept, the ciphertext-policy HVE, and propose a concrete scheme. Then, as an application of our scheme, we propose a public-key encryption with conjunctive keyword search scheme that can be used in the hierarchical user systems. Our scheme is novel in that the ciphertext size grows logarithmically to the number of uses in the system, while that of a conventional scheme grows linearly.
Field distributions and energy flows of the surface waves excited in singlelayer-overcoated gratings are evaluated in order to investigate the behavior of the resonance absorption in the grating.