The search functionality is under construction.

Author Search Result

[Author] Norihiro HAGITA(6hit)

1-6hit
  • Integration of Multiple Microphone Arrays and Use of Sound Reflections for 3D Localization of Sound Sources

    Carlos T. ISHI  Jani EVEN  Norihiro HAGITA  

     
    PAPER

      Vol:
    E97-A No:9
      Page(s):
    1867-1874

    We proposed a method for estimating sound source positions in 3D space by integrating sound directions estimated by multiple microphone arrays and taking advantage of reflection information. Two types of sources with different directivity properties (human speech and loudspeaker speech) were evaluated for different positions and orientations. Experimental results showed the effectiveness of using reflection information, depending on the position and orientation of the sound sources relative to the array, walls, and the source type. The use of reflection information increased the source position detection rates by 10% on average and up to 60% for the best case.

  • Classification of Gait Anomaly due to Lesion Using Full-Body Gait Motions

    Tsuyoshi HIGASHIGUCHI  Toma SHIMOYAMA  Norimichi UKITA  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/01/10
      Vol:
    E100-D No:4
      Page(s):
    874-881

    This paper proposes a method for evaluating a physical gait motion based on a 3D human skeleton measured by a depth sensor. While similar methods measure and evaluate the motion of only a part of interest (e.g., knee), the proposed method comprehensively evaluates the motion of the full body. The gait motions with a variety of physical disabilities due to lesioned body parts are recorded and modeled in advance for gait anomaly detection. This detection is achieved by finding lesioned parts a set of pose features extracted from gait sequences. In experiments, the proposed features extracted from the full body allowed us to identify where a subject was injured with 83.1% accuracy by using the model optimized for the individual. The superiority of the full-body features was validated in in contrast to local features extracted from only a body part of interest (77.1% by lower-body features and 65% by upper-body features). Furthermore, the effectiveness of the proposed full-body features was also validated with single universal model used for all subjects; 55.2%, 44.7%, and 35.5% by the full-body, lower-body, and upper-body features, respectively.

  • Individuality-Preserving Gait Pattern Prediction Based on Gait Feature Transitions

    Tsuyoshi HIGASHIGUCHI  Norimichi UKITA  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/07/20
      Vol:
    E101-D No:10
      Page(s):
    2501-2508

    This paper proposes a method for predicting individuality-preserving gait patterns. Physical rehabilitation can be performed using visual and/or physical instructions by physiotherapists or exoskeletal robots. However, a template-based rehabilitation may produce discomfort and pain in a patient because of deviations from the natural gait of each patient. Our work addresses this problem by predicting an individuality-preserving gait pattern for each patient. In this prediction, the transition of the gait patterns is modeled by associating the sequence of a 3D skeleton in gait with its continuous-value gait features (e.g., walking speed or step width). In the space of the prediction model, the arrangement of the gait patterns are optimized so that (1) similar gait patterns are close to each other and (2) the gait feature changes smoothly between neighboring gait patterns. This model allows to predict individuality-preserving gait patterns of each patient even if his/her various gait patterns are not available for prediction. The effectiveness of the proposed method is demonstrated quantitatively. with two datasets.

  • Recognition of Degraded Machine-Printed Characters Using a Complementary Similarity Measure and Error-Correction Learning

    Minako SAWAKI  Norihiro HAGITA  

     
    PAPER-Classification Methods

      Vol:
    E79-D No:5
      Page(s):
    491-497

    Most conventional methods used in character recognition extract geometrical features, such as stroke direction and connectivity, and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs and stains, and by the graphical designs such as used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is perfectly accurate. This paper proposes a method for recognizing degraded characters as well as characters printed on graphical designs. This method extracts features from binary images, and a new similarity measure, the complementary similarity measure, is used as a discriminant function; it compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2, which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, and special characters. The results show that our method is much more robust against noise than the conventional geometrical-feature method. It also achieves high recognition rates of over 97% for characters with textured foregrounds, over 99% for characters with textured backgrounds, over 98% for outline fonts and over 99% for reverse contrast characters. The experiments for recognizing both the fontstyles and character category show that it also achieves high recognition rates against noise.

  • Comfortable Intelligence for Evaluating Passenger Characteristics in Autonomous Wheelchairs

    Taishi SAWABE  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1308-1316

    In recent years, autonomous driving technologies are being developed for vehicles and personal mobility devices including golf carts and autonomous wheelchairs for various use cases, not only outside areas but inside areas like shopping malls, hospitals and airpots. The main purpose of developing these autonomous vehicles is to avoid the traffic accidents caused by human errors, to assist people with walking, and to improve human comfort by relieving them from driving. Most relevant research focuses on the efficiency and safety of autonomous driving, however, in order to use by the widespread of people in the society, it is important to consider passenger comfort inside vehicles as well as safety and efficiency. Therefore, in this work, we emphasize the importance of considering passenger comfort in designing the control loop of autonomous navigation for the concept of comfortable intelligence in the future autonomous mobility. Moreover, passenger characteristics, in terms of ride comfort in an autonomous vehicle, have not been investigated with regard to safety and comfort, depending on each passenger's driving experience, habits, knowledge, personality, and preference. There are still few studies on the optimization of autonomous driving control reflecting passenger characteristics and different stress factors during the ride. In this study, passenger stress characteristics with different stress factors were objectively analyzed using physiological indices (heart rate and galvanic skin response sensors) during autonomous wheelchair usages. Two different experimental results from 12 participants suggest that there are always at least two types of passengers: one who experiences stress and the other who does not, depending on the stress factors considered. Moreover, with regard to the classification result for the stress reduction method, there are two types of passenger groups, for whom the solution method is, respectively, either effective or ineffective.

  • Feature Space Design for Statistical Image Recognition with Image Screening

    Koichi ARIMURA  Norihiro HAGITA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:1
      Page(s):
    88-93

    This paper proposes a design method of feature spaces in a two-stage image recognition method that improves the recognition accuracy and efficiency in statistical image recognition. The two stages are (1) image screening and (2) image recognition. Statistical image recognition methods require a lot of calculations for spatially matching between subimages and reference patterns of the specified objects to be detected in input images. Our image screening method is effective in lowering the calculation load and improving recognition accuracy. This method selects a candidate set of subimages similar to those in the object class by using a lower dimensional feature vector, while rejecting the rest. Since a set of selected subimages is recognized by using a higher dimensional feature vector, overall recognition efficiency is improved. The classifier for recognition is designed from the selected subimages and also improves recognition accuracy, since the selected subimages are less contaminated than the originals. Even when conventional recognition methods based on linear transformation algorithms, i. e. principal component analysis (PCA) and projection pursuit (PP), are applied to the recognition stage in our method, recognition accuracy and efficiency may be improved. A new criterion, called a screening criterion, for measuring overall efficiency and accuracy of image recognition is introduced to efficiently design the feature spaces of image screening and recognition. The feature space for image screening are empirically designed subject to taking the lower number of dimensions for the feature space referred to as LS and the larger value of the screening criterion. Then, the recognition feature space which number of dimensions is referred to as LR is designed under the condition LSLR. The two detection tasks were conducted in order to examine the performance of image screening. One task is to detect the eye- and-mouth-areas in a face image and the other is to detect the text-area in a document image. The experimental results demonstrate that image screening for these two tasks improves both recognition accuracy and throughput when compared to the conventional one-stage recognition method.