The search functionality is under construction.

Author Search Result

[Author] Peipei ZHAO(2hit)

1-2hit
  • Siamese Transformer for Saliency Prediction Based on Multi-Prior Enhancement and Cross-Modal Attention Collaboration

    Fazhan YANG  Xingge GUO  Song LIANG  Peipei ZHAO  Shanhua LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1572-1583

    Visual saliency prediction has improved dramatically since the advent of convolutional neural networks (CNN). Although CNN achieves excellent performance, it still cannot learn global and long-range contextual information well and lacks interpretability due to the locality of convolution operations. We proposed a saliency prediction model based on multi-prior enhancement and cross-modal attention collaboration (ME-CAS). Concretely, we designed a transformer-based Siamese network architecture as the backbone for feature extraction. One of the transformer branches captures the context information of the image under the self-attention mechanism to obtain a global saliency map. At the same time, we build a prior learning module to learn the human visual center bias prior, contrast prior, and frequency prior. The multi-prior input to another Siamese branch to learn the detailed features of the underlying visual features and obtain the saliency map of local information. Finally, we use an attention calibration module to guide the cross-modal collaborative learning of global and local information and generate the final saliency map. Extensive experimental results demonstrate that our proposed ME-CAS achieves superior results on public benchmarks and competitors of saliency prediction models. Moreover, the multi-prior learning modules enhance images express salient details, and model interpretability.

  • Saliency Guided Gradient Similarity for Fast Perceptual Blur Assessment

    Peipei ZHAO  Leida LI  Hao CAI  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/05/18
      Vol:
    E98-D No:8
      Page(s):
    1613-1616

    Blur is one of the most common distortion type and greatly impacts image quality. Most existing no-reference (NR) image blur metrics produce scores without a fixed range, so it is hard to judge the extent of blur directly. This letter presents a NR perceptual blur metric using Saliency Guided Gradient Similarity (SGGS), which produces blur scores with a fixed range of (0,1). A blurred image is first reblurred using a Gaussian low-pass filter, producing a heavily blurred image. With this reblurred image as reference, a local blur map is generated by computing the gradient similarity. Finally, visual saliency is employed in the pooling to adapt to the characteristics of the human visual system (HVS). The proposed metric features fixed range, fast computation and better consistency with the HVS. Experiments demonstrate its advantages.