1-3hit |
Peng YUE Qian-nan LI Xiang YI Tuo WANG Zeng-ji LIU Geng CHEN Hua-xi GU
A novel and compact electro-optic modulator implemented by a combination of a 12 multimode interference (MMI) coupler and an integrated Mach-Zehnder interferometer (MZI) modulator consisting of a microring and a phase modulator (PM) is presented and analyzed theoretically. It is shown that the proposed modulator offers both ultra-linearity and high output RF gain simultaneously, with no requirements for complicated and precise direct current (DC) control.
Yasuhiro HINOKUMA Zhipeng YUEN Teppei FUKUDA Takahira MITOMI Kiichi HAMAMOTO
1 × N active multi-mode interferometer laser diode (MMI LD) is proposed and demonstrated to realize single-wavelength edge-emitter without using grating configuration. As the 1 × N active-MMI LDs are based on longitudinal mode interference, they have a potential of single-wavelength emission without incorporating any grating layer on/beneath active layer. The fabricated devices showed single-wavelength emission with a side mode suppression ratio (SMSR) of 12dB at a wavelength of 1.57µm.
Peng YUE Zeng-Ji LIU Bin ZHANG
In this paper, based on Equivalent Active Flow, we propose a novel technique called Approximate Fairness Dropping, which is able to approximate fairness by containing misbehaving flows' access queue opportunity with low time/space complexity. Unlike most of the existing Active Queue Management schemes (e.g., RED, BLUE, CHOKE), Approximate Fairness Dropping does not drop the packets whose arriving rate is within the maximum admitted rate, so it protects the well-behaving flows against misbehaving ones, moreover, improves the throughput and decreases the queuing delay. Our simulations and analyses demonstrate that this new technique outperforms the existing schemes and closely approximates the "ideal" case, where full state information is needed.