The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Qiaowei YUAN(8hit)

1-8hit
  • Convergence of SOR in MoM Analysis of Array Antenna

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:5
      Page(s):
    2220-2223

    Convergence of the iterative method based on the successive overrelaxation (SOR) method is investigated to solve the matrix equation in the moment analysis of array antennas. It is found this method can be applied to the sub domain method of moments with fast convergence if the grouping technique is applied and the over-relaxation parameter is properly selected, and the computation time for solving the matrix equation can be reduced to be almost proportional to the second power of the number of unknowns.

  • Fast Algorithm for Solving Matrix Equation in MoM Analysis of Large-Scale Array Antennas

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:11
      Page(s):
    2482-2488

    A new iterative algorithm based on the Gauss-Seidel iteration method is proposed to solve the matrix equation in the MoM analysis of the array antennas. In the new algorithm, the impedance matrix is decomposed into a number of sub matrices, which describe the self and mutual impedance between the groups of the array, and each sub matrix is regarded as a basic iteration unit rather than the matrix element in the ordinary Gauss-Seidel iteration method. It is found that the convergence condition of the ordinary Gauss-Seidel iteration scheme is very strict for the practical use, while the convergence characteristics of the present algorithm are greatly improved. The new algorithm can be applied to the sub domain MoM with a fast convergence if the grouping technique is properly used. The computation time for solving the matrix equation is reduced to be almost proportional to the square of the number of the array elements. The present method is effective in MoM analysis of solving large-scale array antennas.

  • Accurate Source Model for MoM Analysis of Linear Antennas by Using Sinusoidal Reaction Matching Technique

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antenna and Propagation

      Vol:
    E86-B No:2
      Page(s):
    870-872

    A new source model for MoM analysis by using sinusoidal reaction matching technique is proposed for linear antenna analysis. This source model assumes a constant feeding gap and uniform electric field distribution inside the gap. The analysis results are compared with the results of the conventional models and measurement. It is found that the new model can incorporate the effect of the length of driving gap and is more accurate and more stable than that from the conventional source models. The proposed source model is simple and easy to use. This source model, together with the full kernel formulation, makes it possible to analyze the linear dipole antennas with no limitation of ratio of segment length to radius.

  • Experimental Study on MIMO Performance of Modulated Scattering Antenna Array in Indoor Environment

    Lin WANG  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:3
      Page(s):
    679-684

    The modulated scattering antenna array (MSAA) is composed of one normal antenna element and several modulated scattering elements (MSEs). In this paper, a 2-element MSAA is used as the receiving antenna in a 2 2 multiple input multiple output (MIMO) system. MIMO performance of MSAA with various array spacing is measured to investigate the relation between the array spacing and the MIMO performance of the MSAA experimentally in the non-line-of-sight (NLOS) indoor environment. It is found that the error vector magnitude (EVM) and the channel capacity, which reflect MIMO performance, can be affected by the array spacing. The measured results of the MSAA were compared with that of two-dipole antenna array at the same condition.

  • Preconditioners for CG-FMM-FFT Implementation in EM Analysis of Large-Scale Periodic Array Antennas

    Huiqing ZHAI  Qiaowei YUAN  Qiang CHEN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    707-710

    In this research, a sub-array preconditioner is applied to improve the convergence of conjugate gradient (CG) iterative solver in the fast multipole method and fast Fourier transform (FMM-FFT) implementation on a large-scale finite periodic array antenna with arbitrary geometry elements. The performance of the sub-array preconditioner is compared with the near-group preconditioner in the array antenna analysis. It is found that the near-group preconditioner achieves a little better convergence, while the sub-array preconditioner can be easily constructed and programmed with less CPU-time. The efficiency of the CG-FMM-FFT with high efficient preconditioner has been demonstrated in numerical analysis of a finite periodic array antenna.

  • Experimental Study on MUSIC-Based DOA Estimation by Using Universal Steering Vector

    Qiaowei YUAN  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1575-1580

    MUSIC-based estimation of direction of arrival (DOA) using universal steering vector (USV) is experimentally studied. A four-element array antenna and a four-channel receiver are employed for the experiment. In order to improve the accuracy of DOA estimation, USV which has already included the effect of mutual coupling between array elements and effect of array elements themselves is compensated to further include the electric delay and loss of four channels in the receiver. The compensated USV (C-USV) approach proposed in this paper does not need the time-consuming measurement of array element pattern because the compensating matrix for USV is obtained by measuring the S parameters between RF input ports of the feeding cables and IF output ports of the receiver. The experimental results of MUSIC-based DOA estimation show that C-USV approach is an accurate, effective and practical method for the MUSIC-based DOA estimation.

  • Numerical Analysis on MIMO Performance of the Modulated Scattering Antenna Array in Indoor Environment

    Lin WANG  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:6
      Page(s):
    1752-1756

    The multiple-input multiple-output (MIMO) performance of the modulated scattering antenna array (MSAA) is analyzed numerically for the first time in indoor environment based on an approach to hybridization of the Volterra series method and method of moments (MoM) in this letter. Mutual coupling effect between the Modulated scattering element (MSE) and the normal antenna element is also considered in this analysis. It is found that MIMO performance of the MSAA is improved with reducing the array spacing of the MSAA in 4 different indoor receiving areas. At the same time, the simulated results of the MSAA are compared with those of the dipole antenna array at the same condition.

  • Analysis of Large-Scale Periodic Array Antennas by CG-FFT Combined with Equivalent Sub-Array Preconditioner

    Huiqing ZHAI  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  Changhong LIANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:3
      Page(s):
    922-928

    This paper presents method that offers the fast and accurate analysis of large-scale periodic array antennas by conjugate-gradient fast Fourier transform (CG-FFT) combined with an equivalent sub-array preconditioner. Method of moments (MoM) is used to discretize the electric field integral equation (EFIE) and form the impedance matrix equation. By properly dividing a large array into equivalent sub-blocks level by level, the impedance matrix becomes a structure of Three-level Block Toeplitz Matrices. The Three-level Block Toeplitz Matrices are further transformed to Circulant Matrix, whose multiplication with a vector can be rapidly implemented by one-dimension (1-D) fast Fourier transform (FFT). Thus, the conjugate-gradient fast Fourier transform (CG-FFT) is successfully applied to the analysis of a large-scale periodic dipole array by speeding up the matrix-vector multiplication in the iterative solver. Furthermore, an equivalent sub-array preconditioner is proposed to combine with the CG-FFT analysis to reduce iterative steps and the whole CPU-time of the iteration. Some numerical results are given to illustrate the high efficiency and accuracy of the present method.