1-3hit |
Yongtang BAO Pengfei ZHOU Yue QI Zhihui WANG Qing FAN
A frontal and realistic face image was synthesized from a single profile face image. It has a wide range of applications in face recognition. Although the frontal face method based on deep learning has made substantial progress in recent years, there is still no guarantee that the generated face has identity consistency and illumination consistency in a significant posture. This paper proposes a novel pixel-based feature regression generative adversarial network (PFR-GAN), which can learn to recover local high-frequency details and preserve identity and illumination frontal face images in an uncontrolled environment. We first propose a Reslu block to obtain richer feature representation and improve the convergence speed of training. We then introduce a feature conversion module to reduce the artifacts caused by face rotation discrepancy, enhance image generation quality, and preserve more high-frequency details of the profile image. We also construct a 30,000 face pose dataset to learn about various uncontrolled field environments. Our dataset includes ages of different races and wild backgrounds, allowing us to handle other datasets and obtain better results. Finally, we introduce a discriminator used for recovering the facial structure of the frontal face images. Quantitative and qualitative experimental results show our PFR-GAN can generate high-quality and high-fidelity frontal face images, and our results are better than the state-of-art results.
Xuemei FENG Qing FANG Kouichi KONNO Zhiyi ZHANG Katsutsugu MATSUYAMA
In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as l2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.
Xue LEI Wei HUANG Wenqing FAN Yixian YANG
Dynamic analysis is frail and insufficient to find hidden paths in environment-intensive program. By analyzing a broad spectrum of different concolic testing systems, we conclude that a number of them cannot handle programs that interact with the environment or require a complete working model. This paper addresses this problem by automatically identifying and modifying outputs of the data input interface function(DIIF). The approach is based on fine-grained taint analysis for detecting and updating the data that interacts with the environment to generate a new set of inputs to execute hidden paths. Moreover, we developed a prototype and conducted extensive experiments using a set of complex and environmentally intensive programs. Finally, the result demonstrates that our approach could identify the DIIF precisely and discover hidden path obviously.