The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Qiong LI(2hit)

1-2hit
  • Finger Vein Recognition with Gabor Wavelets and Local Binary Patterns

    Jialiang PENG  Qiong LI  Ahmed A. ABD EL-LATIF  Ning WANG  Xiamu NIU  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:8
      Page(s):
    1886-1889

    In this paper, a new finger vein recognition method based on Gabor wavelet and Local Binary Pattern (GLBP) is proposed. In the new scheme, Gabor wavelet magnitude and Local Binary Pattern operator are combined, so the new feature vector has excellent stability. We introduce Block-based Linear Discriminant Analysis (BLDA) to reduce the dimensionality of the GLBP feature vector and enhance its discriminability at the same time. The results of an experiment show that the proposed approach has excellent performance compared to other competitive approaches in current literatures.

  • Toward Blockchain-Based Spoofing Defense for Controlled Optimization of Phases in Traffic Signal System

    Yingxiao XIANG  Chao LI  Tong CHEN  Yike LI  Endong TONG  Wenjia NIU  Qiong LI  Jiqiang LIU  Wei WANG  

     
    PAPER

      Pubricized:
    2021/09/13
      Vol:
    E105-D No:2
      Page(s):
    280-288

    Controlled optimization of phases (COP) is a core implementation in the future intelligent traffic signal system (I-SIG), which has been deployed and tested in countries including the U.S. and China. In such a system design, optimal signal control depends on dynamic traffic situation awareness via connected vehicles. Unfortunately, I-SIG suffers data spoofing from any hacked vehicle; in particular, the spoofing of the last vehicle can break the system and cause severe traffic congestion. Specifically, coordinated attacks on multiple intersections may even bring cascading failure of the road traffic network. To mitigate this security issue, a blockchain-based multi-intersection joint defense mechanism upon COP planning is designed. The major contributions of this paper are the following. 1) A blockchain network constituted by road-side units at multiple intersections, which are originally distributed and decentralized, is proposed to obtain accurate and reliable spoofing detection. 2) COP-oriented smart contract is implemented and utilized to ensure the credibility of spoofing vehicle detection. Thus, an I-SIG can automatically execute a signal planning scheme according to traffic information without spoofing data. Security analysis for the data spoofing attack is carried out to demonstrate the security. Meanwhile, experiments on the simulation platform VISSIM and Hyperledger Fabric show the efficiency and practicality of the blockchain-based defense mechanism.