1-1hit |
Ya ZENG Li WAN Qiuhong LUO Mao CHEN
Traditional pipeline methods for task-oriented dialogue systems are designed individually and expensively. Existing memory augmented end-to-end methods directly map the inputs to outputs and achieve promising results. However, the most existing end-to-end solutions store the dialogue history and knowledge base (KB) information in the same memory and represent KB information in the form of KB triples, making the memory reader's reasoning on the memory more difficult, which makes the system difficult to retrieve the correct information from the memory to generate a response. Some methods introduce many manual annotations to strengthen reasoning. To reduce the use of manual annotations, while strengthening reasoning, we propose a hierarchical memory model (HM2Seq) for task-oriented systems. HM2Seq uses a hierarchical memory to separate the dialogue history and KB information into two memories and stores KB in KB rows, then we use memory rows pointer combined with an entity decoder to perform hierarchical reasoning over memory. The experimental results on two publicly available task-oriented dialogue datasets confirm our hypothesis and show the outstanding performance of our HM2Seq by outperforming the baselines.