1-2hit |
V. Ralph ALGAZI Todd R. REED Gary E. FORD Eric MAURINCOMME Iftekhar HUSSAIN Ravindra POTHARLANKA
The encoding of high quality and super high definition images requires new approaches to the coding problem. The nature of such images and the applications in which they are used prohibits the introduction of perceptible degradation by the coding process. In this paper, we discuss techniques for the perceptually transparent coding of images. Although technically lossy methods, images encoded and reconstructed using these techniques appear identical to the original images. The reconstructed images can be postprocessed (e.g., enhanced via anisotropic filtering), due to the absence of structured errors, commonly introduced by conventional lossy methods. The compression, ratios obtained are substantially higher than those achieved using lossless means.
Makoto MIYAHARA Takao INO Hideki SHIRAI Shuji TANIHO Ralph ALGAZI
The coming information society will require images at the high end of the quality range. By using a new method which focuses on the assessment words of the high order sensation, we are investigating the important physical factors for the difficult reproduction of high level, high quality sensation in the electronic capture and display of images. We have found a key assessment word "image depth" that describes appropriately the high order subjective sensation that is indispensable for the display of extra high quality images. Related to the depth of images, we have discovered a new physical factor and the degree of precision required of already known physical factors for the display of extra high quality images. The cross modulation among R, G and B signals is the newly discovered important physical factor affecting the quality of an electronic display. In addition, we have found that very strict control of distortion in the gamma and the step response and the strict suppression of the halation in a CRT display are necessary. We note that aliasing of the displayed images also destroys the sensation of depth. This paper first outlines the overall objective of our work, second considers the important physical factors as important for extra high quality imaging, and then describes the specific effects of cross modulation distortion, gamma, step response, halation and aliasing as they relate to image depth. Finally, the relation of the discussed physical factors with the high order sensation are discussed broadly.