1-1hit |
Haiqiang LIU Gang HUA Hongsheng YIN Aichun ZHU Ran CUI
Compressed sensing is an effective compression algorithm. It is widely used to measure signals in distributed sensor networks (DSNs). Considering the limited resources of DSNs, the measurement matrices used in DSNs must be simple. In this paper, we construct a deterministic measurement matrix based on Gordon-Mills-Welch (GMW) sequence. The column vectors of the proposed measurement matrix are generated by cyclically shifting a GMW sequence. Compared with some state-of-the-art measurement matrices, the proposed measurement matrix has relative lower computational complexity and needs less storage space. It is suitable for resource-constrained DSNs. Moreover, because the proposed measurement matrix can be realized by using simple shift register, it is more practical. The simulation result shows that, in terms of recovery quality, the proposed measurement matrix performs better than some state-of-the-art measurement matrices.