The search functionality is under construction.

Author Search Result

[Author] Riaz ESMAILZADEH(9hit)

1-9hit
  • Evaluation of Asymmetric TDD Systems Employing AMC and HARQ by Considering MCS Selection Errors

    Nandar LYNN  Osamu TAKYU  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3138-3147

    In this paper, we evaluate the performance of asymmetric Time Division Duplex (TDD) system that employs Adaptive Modulation and Coding (AMC) and Hybrid ARQ, with consideration of the effect of control delays in TDD. Channel reciprocity characteristic in TDD allows utilization of open loop channel estimation to choose appropriate modulation and coding scheme (MCS) level for AMC. However, control delay in AMC and HARQ depends on TDD time slot allocation formats. Large control delay in AMC will result in false MCS selection due to the poor channel correlation between measured channel state from the received signals and instantaneous channel state of actual transmission with the MCS selected based on the measured channel state. We present an analytical approach to calculate the probability of MCS level selection error in different channel conditions for different asymmetric time slot allocations. From the theoretical and simulation results, it is shown that the instantaneous throughput per slot depends not only on maximum Doppler frequency but also on asymmetric slot allocations. Average delay time that yields error free packet reception in the downlink increases as the number of continuous downlink slots increases.

  • Two-Stage Random-Access Using Two-Hop Relay for Multi-Hop Systems

    Yoichiro MIZUNO  Ryo HASEGAWA  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2630-2639

    Higher transmission rates are one of the main characteristics of the fourth-generation (4G*) of mobile communications. These systems are expected to operate at higher frequency bands, which experience larger propagation loss. This results in larger required transmission power, which causes several problems, particularly for uplink communications, as the typical mobile station (MS) has limited transmission power. Multi-hop systems have been proposed to address this problem. In this paper, we consider the issue of random-access (RA) in a multi-hop system. It is clear that a two-hop mobile communication system requires a two-stage RA process. In this paper, we propose a two-stage RA process that is an extension of the RA process of the CDMA-based 3GPP standard. The proposed method uses a hybrid of code division multiple access (CDMA) and Slotted-ALOHA. To realize the proposed two-hop RA, we dedicate one slot for second-hop transmissions in each interval (predefined); we refer to this as the interval slots allocation (ISsA) technique. Numerical analyses and simulations are conducted to evaluate its basic performance in a multi-hop system. The results demonstrate the superior throughput-delay performance of the proposed two-stage RA multi-hop system with ISsA.

  • Partial Frequency ARQ System for Multi-Carrier Packet Communication

    Hiroyuki ATARASHI  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E78-B No:8
      Page(s):
    1197-1203

    To support high bit rate and high quality indoor radio communication systems, we have to solve intersymbol interference (ISI) problem caused by frequency-selective fading. Recently multi-carrier modulation technique is considered to be one of the effective methods for this problem. In this paper we propose Partial Frequency ARQ (Automatic Repeat reQuest) system which can achieve effective ARQ scheme for multi-carrier packet communication. This system operates partial retransmission of erroneous power faded packets, and it is superior to the traditional ARQ systems. Furthermore two different protocols are examined for this system: Static Carrier Assignment (SCA) and Dynamic Carrier Assignment (DCA). By computer simulation we found that DCA method can achieve better performance than SCA in terms of both throughput and packet transmission delay.

  • Quasi-Synchronous Time Division Duplex CDMA

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E78-A No:9
      Page(s):
    1201-1205

    A quasi-synchronous (QS) code division multiple access (CDMA) system is proposed for mobile communications. In the proposed method, which uses the time division duplex (TDD) mode of transmission, a mobile receiver can measure propagation delay changes. It then accordingly adjusts its transmission time so its signal can arrive at base station synchronously with other mobile units. A simple control unit is used at the mobile unit in order to reduce any error due to the propagation delay changes. The system operates as follows. At the start of a call, a mobile unit is quasi-synchronised through feedback control from the base station. The mobile unit then maintains synchronous status without any further base station feedback. The degree of the quasi-synchronous accuracy is determined by a clock in mobile units. This paper shows performance results based on using a clock rate of ten times faster than the spreading rate. Orthogonal codes are used for spreading the signals. The results demonstrate that the reverse link CDMA multiuser interference is to a great degree removed.

  • Pre-RAKE Diversity Combination for Direct Sequence Spread Spectrum Mobile Communications Systems

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1008-1015

    A new method of multipath diversity combination is proposed for Direct Sequence Spread Spectrum (DS-SS) mobile communications. In this method, the transmitted signal from the base staion is the sum of a number of the same spread signal, each one delayed and scaled according to the delay and the strength of the multipaths of the transmission channel. As a result the received signal at the mobile unit will already be a Rake combination of the multipath signals. This new method is called Pre-Rake diversity combination because the Rake diversity combination process is performed before transmission By this method the size and complexity of the mobile unit can be minimized, and the unit is made as simple as a non-combining single path receiver. A theoretical examination of the Signal to Noise Ratio (SNR) and the Bit Error Rate (BER) results for the traditional Rake and the Pre-Rake combiners as well as computer simulations show that the performance of the Pre-Rake combiner is equivalent to that of the Rake combiner.

  • Analysis of Performance Degradation due to Channel Estimation Error in Pre-Rake TDD/CDMA

    Norharyati BINTI HARUM  Yuh TAMURA  Sigit P.W. JAROT  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2508-2515

    In recent years, Pre-Rake combining technique has become a hot topic of research as it decreases the complexity of the portable mobile unit, while achieving the same multipath diversity effect of the Rake receiver. The technique is based on precoding of the transmitted signal relying on knowledge of the channel estimation response before transmission. This a priori channel state information is available in Time Division Duplexing (TDD) systems, since the same channel is used both in uplink and downlink. In practice, the error in channel estimation in Pre-Rake system occurs due to time variability in mobile radio channel. Most previous works on Pre-Rake in TDD CDMA have not taken into consideration the effect of imperfect channel estimation. In this paper, we present Pre-Rake performance under imperfect channel estimation due to time variability in TDD system, depending on Doppler Frequency and compare it with the ideal Pre-Rake system. Numerical analysis and computer simulations were carried out to obtain the system error probability.

  • Time Division Duplex Method of Transmission of Direct Sequence Spread Spectrum Signals for Power Control Implementation

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1030-1038

    A time division duplex (TDD) direct sequence spread spectrum communication (DS-SS) system is proposed for operation in channels with Rayleigh fading characteristics. It is shown that using the TDD method is advantageous because the devices can be designed more simply, the method is more frequency efficient and as a result the systems will be less costly and less power consuming. It is also shown that an efficient power control method can be implemented for the TDD systems. In contrast to the traditional access techniques such as frequency division multiple access (FDMA) and time division multiple access (TDMA) that are mainly frequency limited, the code division multiple access (CDMA) method which uses the DS-SS technique is interference limited. This means that an efficient power control method can increase the capacity of the DS-SS communications system. Computer simulations are used to evaluate the performance of the TDD power control method. Performance improvement of order of 12 to 17dB at bit error rate (BER) of 10-3 can be obtained for different methods of power control. The advantages of the TDD technique for the future DS-SS systems operating in the Industrial, Scientific and Medical (ISM) band are explained in an appendix to this paper.

  • Comparison of Cell Search Methods for Asynchronous Wideband CDMA Cellular System

    Johan NYSTROM  Riaz ESMAILZADEH  Karim JAMAL  Yi-Pin Eric WANG  

     
    PAPER-Communication Systems

      Vol:
    E82-A No:10
      Page(s):
    2115-2120

    The initial cell search procedure of a terminal in an asynchronous wideband CDMA (WCDMA) system is discussed. The procedure consists of the following steps (not necessarily in this order): chip and frame synchronization; identification and synchronization of the long scrambling code; and determination of the target base station identity. Higuchi et al. proposed a cell search method for such a system. We propose a modification of that scheme which offers substantial terminal complexity reductions with the same performance. The price is a slight increase in delay. Furthermore, we study the impact on performance and complexity for different parameter settings for these methods.

  • Iterative QRM-MLD with Pilot-Assisted Decision Directed Channel Estimation for OFDM MIMO Multiplexing

    Koichi ADACHI  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1892-1902

    Multiple-input multiple-output (MIMO) multiplexing has recently been attracting considerable attention for increasing the transmission rate in a limited bandwidth. In MIMO multiplexing, the signals transmitted simultaneously from different transmit antennas must be separated and detected at a receiver. Maximum likelihood detection with QR-decomposition and M-algorithm (QRM-MLD) can achieve good performance while keeping computational complexity low. However, when the number of surviving symbol replica candidates in the M-algorithm is set to be small, the performance of QRM-MLD degrades compared to that of MLD because of wrong selection of surviving symbol replica candidates. Furthermore, when channel estimation is inaccurate, accurate signal ranking and QR-decomposition cannot be carried out. In this paper, we propose an iterative QRM-MLD with decision directed channel estimation to improve the packet error rate (PER) performance. In the proposed QRM-MLD, decision feedback data symbols are also used for channel estimation in addition to pilot symbols in order to improve the channel estimation accuracy. Signal detection/channel estimation are then carried out in an iterative fashion. Computer simulation results show that the proposed QRM-MLD reduces the required average received Eb/N0 for PER of 10-2 by about 1.2 dB compared to the conventional method using orthogonal pilot symbols only.