The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Rikuya YAMAMOTO(1hit)

1-1hit
  • A Low-Cost High-Performance Semantic and Physical Distance Calculation Method Based on ZIP Code

    Da LI  Yuanyuan WANG  Rikuya YAMAMOTO  Yukiko KAWAI  Kazutoshi SUMIYA  

     
    PAPER

      Pubricized:
    2022/01/13
      Vol:
    E105-D No:5
      Page(s):
    920-927

    Recently, machine learning approaches and user movement history analysis on mobile devices have attracted much attention. Generally, we need to apply text data into the word embedding tool for acquiring word vectors as the preprocessing of machine learning approaches. However, it is difficult for mobile devices to afford the huge cost of high-dimensional vector calculation. Thus, a low-cost user behavior and user movement history analysis approach should be considered. To address this issue, firstly, we convert the zip code and street house number into vectors instead of textual address information to reduce the cost of spatial vector calculation. Secondly, we propose a low-cost high-performance semantic and physical distance (real distance) calculation method that applied zip-code-based vectors. Finally, to verify the validity of our proposed method, we utilize the US zip code data to calculate both semantic and physical distances and compare their results with the previous method. The experimental results showed that our proposed method could significantly improve the performance of distance calculation and effectively control the cost to a low level.