1-4hit |
Kenta UMEBAYASHI Robert H. MORELOS-ZARAGOZA Ryuji KOHNO
A non-data aided carrier recovery technique using digital modulation format identification called multi-mode PLL (Phase Locked Loop) is proposed. This technique can be interpreted as a modulation identification method that is robust against static phase and frequency offsets. The performance of the proposed technique is studied and the analytical expressions are derived for the probability of lock detection, acquisition time over AWGN channel in the cases of M-PSK and M-QAM modulations with respect to frequency offset and signal-to-noise ratio.
Motohiko ISAKA Robert H. MORELOS-ZARAGOZA Marc P. C. FOSSORIER Shu LIN Hideki IMAI
In this paper, we investigate multilevel coding and multistage decoding for satellite broadcasting with moderate decoding complexity. An unconventional signal set partitioning is used to achieve unequal error protection capabilities. Two possibilities are shown and analyzed for practical systems: (i) linear block component codes with near optimum decoding, (ii) punctured convolutional component codes with a common trellis structure.
Motohiko ISAKA Robert H. MORELOS-ZARAGOZA Marc P. C. FOSSORIER Shu LIN Hideki IMAI
Unequal error protection (UEP) is a very promising coding technique for satellite broadcasting, as it gradually reduces the transmission rate. From the viewpoint of bandwidth efficiency, UEP should be achieved in the context of multilevel coded modulation. However, the conventional mapping between encoded bits and modulation signals, usually realized for multilevel block modulation codes and multistage decoding, is not very compatible with UEP coding because of the large number of resulting nearest neighbor codewords. In this paper, new coded modulation schemes for UEP based on unconventional partitioning are proposed. A linear operation referred to as interlevel combination is introduced. This operation generalizes previous partitioning proposed for UEP applications and provides additional flexibility with respect to UEP capabilities. The error performance of the proposed codes are evaluated both by computer simulations and a theoretical analysis. The obtained results show that the proposed codes achieve good tradeoff between the proportion and the error performance of each error protection level.
Yuta KODERA Md. Arshad ALI Takeru MIYAZAKI Takuya KUSAKA Yasuyuki NOGAMI Satoshi UEHARA Robert H. MORELOS-ZARAGOZA
An algebraic group is an essential mathematical structure for current communication systems and information security technologies. Further, as a widely used technology underlying such systems, pseudorandom number generators have become an indispensable part of their construction. This paper focuses on a theoretical analysis for a series of pseudorandom sequences generated by a trace function and the Legendre symbol over an odd characteristic field. As a consequence, the authors give a theoretical proof that ensures a set of subsequences forms a group with a specific binary operation.