1-2hit |
Hasan S. M. AL-KHAFFAF Abdullah Z. TALIB Rosalina Abdul SALAM
Noise removal in engineering drawing is an important operation performed before other image analysis tasks. Many algorithms have been developed to remove salt-and-pepper noise from document images. Cleaning algorithms should remove noise while keeping the real part of the image unchanged. Some algorithms have disadvantages in cleaning operation that leads to removing of weak features such as short thin lines. Others leave the image with hairy noise attached to image objects. In this article a noise removal procedure called TrackAndMayDel (TAMD) is developed to enhance the noise removal of salt-and-pepper noise in binary images of engineering drawings. The procedure could be integrated with third party algorithms' logic to enhance their ability to remove noise by investigating the structure of pixels that are part of weak features. It can be integrated with other algorithms as a post-processing step to remove noise remaining in the image such as hairy noise attached with graphical elements. An algorithm is proposed by incorporating TAMD in a third party algorithm. Real scanned images from GREC'03 contest are used in the experiment. The images are corrupted by salt-and-pepper noise at 10%, 15%, and 20% levels. An objective performance measure that correlates with human vision as well as MSE and PSNR are used in this experiment. Performance evaluation of the introduced algorithm shows better-quality images compared to other algorithms.
Hasan S.M. AL-KHAFFAF Abdullah Z. TALIB Rosalina ABDUL SALAM
Many factors, such as noise level in the original image and the noise-removal methods that clean the image prior to performing a vectorization, may play an important role in affecting the line detection of raster-to-vector conversion methods. In this paper, we propose an empirical performance evaluation methodology that is coupled with a robust statistical analysis method to study many factors that may affect the quality of line detection. Three factors are studied: noise level, noise-removal method, and the raster-to-vector conversion method. Eleven mechanical engineering drawings, three salt-and-pepper noise levels, six noise-removal methods, and three commercial vectorization methods were used in the experiment. The Vector Recovery Index (VRI) of the detected vectors was the criterion used for the quality of line detection. A repeated measure ANOVA analyzed the VRI scores. The statistical analysis shows that all the studied factors affected the quality of line detection. It also shows that two-way interactions between the studied factors affected line detection.