The search functionality is under construction.

Author Search Result

[Author] Rui JI(3hit)

1-3hit
  • Fault Analysis and Diagnosis of Coaxial Connectors in RF Circuits

    Rui JI  Jinchun GAO  Gang XIE  Qiuyan JIN  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E100-C No:11
      Page(s):
    1052-1060

    Coaxial connectors are extensively used in electrical systems and the degradation of the connector can alter the signal that is being transmitted and leads to faults, which is one of the major causes of low communication quality. In this work, the failure features caused by the degraded connector contact surface were studied. The relationship between the DC resistance and decreased real contact areas was given. Considering the inductance properties and capacitive coupling at high frequencies, the impedance characteristics of the degraded connector were discussed. Based on the transmission line theory and experimental measurement, an equivalent lump circuit of the coaxial connector was developed. For the degraded contact surface, the capacitance was analyzed, and the frequency effect was investigated. According to the high frequency characteristics of the degraded connector, a fault detection and location method for coaxial connectors in RF system was developed using a neural network method. For connectors suffering from different levels of pollution, their impedance modulus varies continuously. Considering the range of the connector's impedance parameters, the fault modes were determined. Based on the scattering parameter simulation of a RF receiver front-end circuit, the S11 and S21 parameters were obtained as feature parameters and Monte Carlo simulations were conducted to generate training and testing samples. Based on the BP neural network algorithm, the fault modes were classified and the results show the diagnosis accuracy was 97.33%.

  • A Range-Extended and Area-Efficient Time-to-Digital Converter Utilizing Ring-Tapped Delay Line

    Xin-Gang WANG  Fei WANG  Rui JIA  Rui CHEN  Tian ZHI  Hai-Gang YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:9
      Page(s):
    1184-1194

    This paper proposes a coarse-fine Time-to-Digital Converter (TDC), based on a Ring-Tapped Delay Line (RTDL). The TDC achieves the picosecond's level timing resolution and microsecond's level dynamic range at low cost. The TDC is composed of two coarse time measurement blocks, a time residue generator, and a fine time measurement block. In the coarse blocks, RTDL is constructed by redesigning the conventional Tapped Delay Line (TDL) in a ring structure. A 12-bit counter is employed in one of the two coarse blocks to count the cycle times of the signal traveling in the RTDL. In this way, the input range is increased up to 20.3µs without use of an external reference clock. Besides, the setup time of soft-edged D-flip-flops (SDFFs) adopted in RTDL is set to zero. The adjustable time residue generator picks up the time residue of the coarse block and propagates the residue to the fine block. In the fine block, we use a Vernier Ring Oscillator (VRO) with MOS capacitors to achieve a scalable timing resolution of 11.8ps (1 LSB). Experimental results show that the measured characteristic curve has high-level linearity; the measured DNL and INL are within ± 0.6 LSB and ± 1.5 LSB, respectively. When stimulated by constant interval input, the standard deviation of the system is below 0.35 LSB. The dead time of the proposed TDC is less than 650ps. When operating at 5 MSPS at 3.3V power supply, the power consumption of the chip is 21.5mW. Owing to the use of RTDL and VRO structures, the chip core area is only 0.35mm × 0.28mm in a 0.35µm CMOS process.

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.