1-2hit |
Hai YANG Yunfei XU Qinwei ZHAO Ruohua ZHOU Yonghong YAN
Sparse representation has been studied within the field of signal processing as a means of providing a compact form of signal representation. This paper introduces a sparse representation based framework named Sparse Probabilistic Linear Discriminant Analysis in speaker recognition. In this latent variable model, probabilistic linear discriminant analysis is modified to obtain an algorithm for learning overcomplete sparse representations by replacing the Gaussian prior on the factors with Laplace prior that encourages sparseness. For a given speaker signal, the dictionary obtained from this model has good representational power while supporting optimal discrimination of the classes. An expectation-maximization algorithm is derived to train the model with a variational approximation to a range of heavy-tailed distributions whose limit is the Laplace. The variational approximation is also used to compute the likelihood ratio score of all trials of speakers. This approach performed well on the core-extended conditions of the NIST 2010 Speaker Recognition Evaluation, and is competitive compared to the Gaussian Probabilistic Linear Discriminant Analysis, in terms of normalized Decision Cost Function and Equal Error Rate.
Shengyu YAO Ruohua ZHOU Pengyuan ZHANG
This paper proposes a speaker-phonetic i-vector modeling method for text-dependent speaker verification with random digit strings, in which enrollment and test utterances are not of the same phrase. The core of the proposed method is making use of digit alignment information in i-vector framework. By utilizing force alignment information, verification scores of the testing trials can be computed in the fixed-phrase situation, in which the compared speech segments between the enrollment and test utterances are of the same phonetic content. Specifically, utterances are segmented into digits, then a unique phonetically-constrained i-vector extractor is applied to obtain speaker and channel variability representation for every digit segment. Probabilistic linear discriminant analysis (PLDA) and s-norm are subsequently used for channel compensation and score normalization respectively. The final score is obtained by combing the digit scores, which are computed by scoring individual digit segments of the test utterance against the corresponding ones of the enrollment. Experimental results on the Part 3 of Robust Speaker Recognition (RSR2015) database demonstrate that the proposed approach significantly outperforms GMM-UBM by 52.3% and 53.5% relative in equal error rate (EER) for male and female respectively.