The search functionality is under construction.

Author Search Result

[Author] Ryo NOMURA(8hit)

1-8hit
  • High-Level Synthesis Design at NTT Systems Labs

    Yukihiro NAKAMURA  Kiyoshi OGURI  Akira NAGOYA  Mitsuteru YUKISHITA  Ryo NOMURA  

     
    PAPER-High-Level Design

      Vol:
    E76-D No:9
      Page(s):
    1047-1054

    This paper describes the hierarchical behavioral description language celled SFL and its processing system. This integrated CAD system called PARTHENON is used for designs of the leading ASICs in the NTT Systems Labs. This paper shows, therefore, the effectiveness of PARTHENON as a practical high-lelel synthesis system through real design experience. SFL was developed to aid in the design of the hardware functions and behaviors of ASICs composed solely of clocksynchronized circuits. The main features of SFL are as follows: (1) It is not mixed with connection description, but employs only behavioral description (like procedual description in program language), and it provides hierarchical expression of behavioral description. (2) It permits the description of parallel processing operations by adopting a new hardware task concept. And, (3) it is linked with the behavioral simulator, logic synthesizer, and other components of the processing system. After describing SFL in some detail, a brief explanation of its synthesizer and other processing components is provided, along with its application results in the real design of some leading ASICs at the NTT Systems Laboratories.

  • A Note on the ε-Overflow Probability of Lossless Codes

    Ryo NOMURA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    LETTER-Information Theory

      Vol:
    E90-A No:12
      Page(s):
    2965-2970

    In this letter, we generalize the achievability of variable-length coding from two viewpoints. One is the definition of an overflow probability, and the other is the definition of an achievability. We define the overflow probability as the probability of codeword length, not per symbol, is larger than ηn and we introduce the ε-achievability of variable-length codes that implies an existence of a code for the source under the condition that the overflow probability is smaller than or equal to ε. Then we show that the ε-achievability of variable-length codes is essentially equivalent to the ε-achievability of fixed-length codes for general sources. Moreover by using above results, we show the condition of ε-achievability for some restricted sources given ε.

  • Variable-Length Coding with Cost Allowing Non-Vanishing Error Probability

    Hideki YAGI  Ryo NOMURA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:8
      Page(s):
    1683-1692

    We consider fixed-to-variable length coding with a regular cost function by allowing the error probability up to any constantε. We first derive finite-length upper and lower bounds on the average codeword cost, which are used to derive general formulas of two kinds of minimum achievable rates. For a fixed-to-variable length code, we call the set of source sequences that can be decoded without error the dominant set of source sequences. For any two regular cost functions, it is revealed that the dominant set of source sequences for a code attaining the minimum achievable rate under a cost function is also the dominant set for a code attaining the minimum achievable rate under the other cost function. We also give general formulas of the second-order minimum achievable rates.

  • Algorithms for Multiplexers Assignment after Scheduling and Allocation Steps

    Hiroshi SEKIGAWA  Kiyoshi OGURI  Ryo NOMURA  Yukihiro NAKAMURA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1202-1211

    In recent VLSI design of digital data paths, significantly more area is occupied by interconnect elements than by functional units and registers. Nevertheless, until recently most work in data path synthesis has been concentrated on trying to reduce the area of functional units and registers, without paying much attention to the interconnect area. Lately, research that addresses reducing the area of interconnection and of functional units and registers is increasing, but in them, most algorithms for assigning interconnect elements are not efficient enough to optimize the interconnect area. In most current research, algorithms for interconnect element assignment are used to calculate the cost functions during the scheduling and/or allocation steps. This makes it impossible to use efficient optimization algorithms that may consume long time. This paper presents some new algorithms used to assign interconnect elements in data paths. The algorithms minimize the number of multiplexer inputs after the scheduling and operator/register allocations have been made. The algorithms have two characteristics. First, we use a branch and bound method for small problems. We confirmed that exact solutions in practical time can be obtained with this method for rather large problems, when the solutions are restricted to a one-level multiplexer model. Second, we use a certain heuristic method for larger problems. The algorithms have been implemented in C on an Apollo Domain Series 10000.

  • Stochastic Discrete First-Order Algorithm for Feature Subset Selection

    Kota KUDO  Yuichi TAKANO  Ryo NOMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/04/13
      Vol:
    E103-D No:7
      Page(s):
    1693-1702

    This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. [5] recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a stochastic discrete first-order (SDFO) algorithm for feature subset selection. In this algorithm, random perturbations are added to a sequence of candidate solutions as a means to escape from locally optimal solutions, which broadens the range of discoverable solutions. Moreover, we derive the optimal step size in the gradient-descent direction to accelerate convergence of the algorithm. We also make effective use of the L2-regularization term to improve the predictive performance of a resultant subset regression model. The simulation results demonstrate that our algorithm substantially outperforms the original DFO algorithm. Our algorithm was superior in predictive performance to lasso and forward stepwise selection as well.

  • On the Condition of ε-Transmissible Joint Source-Channel Coding for General Sources and General Channels

    Ryo NOMURA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    LETTER-Information Theory

      Vol:
    E92-A No:11
      Page(s):
    2936-2940

    The joint source-channel coding problem is considered. The joint source-channel coding theorem reveals the existence of a code for the pair of the source and the channel under the condition that the error probability is smaller than or equal to ε asymptotically. The separation theorem guarantees that we can achieve the optimal coding performance by using the two-stage coding. In the case that ε = 0, Han showed the joint source-channel coding theorem and the separation theorem for general sources and channels. Furthermore the ε-coding theorem (0 ≤ ε <1) in the similar setting was studied. However, the separation theorem was not revealed since it is difficult in general. So we consider the separation theorem in this setting.

  • An Analysis of Slepian-Wolf Coding Problem Based on the Asymptotic Normality

    Ryo NOMURA  Toshiyasu MATSUSHIMA  

     
    LETTER-Information Theory

      Vol:
    E94-A No:11
      Page(s):
    2220-2225

    Source coding theorem reveals the minimum achievable code length under the condition that the error probability is smaller than or equal to some small constant. In the single user communication system, the source coding theorem was proved for general sources. The class of general source is quite large and it is important result since the result can be applied for a wide class of sources. On the other hand there are several studies to evaluate the achievable code length more precisely for the restricted class of sources by using the restriction. In the multi-user communication system, although the source coding theorem was proved for general correlated sources, there is no study to evaluate the achievable code length more precisely. In this study, we consider the stationary memoryless correlated sources and show the coding theorem for Slepian-Wolf type problem more precisely than the previous result.

  • On the Overflow Probability of Fixed-to-Variable Length Codes with Side Information

    Ryo NOMURA  Toshiyasu MATSUSHIMA  

     
    PAPER-Source Coding

      Vol:
    E94-A No:11
      Page(s):
    2083-2091

    The overflow probability is one of criteria that evaluate the performance of fixed-to-variable length (FV) codes. In the single source coding problem, there were many researches on the overflow probability. Recently, the source coding problem for correlated sources, such as Slepian-Wolf coding problem or source coding problem with side information, is one of main topics in information theory. In this paper, we consider the source coding problem with side information. In particular, we consider the FV code in the case that the encoder and the decoder can see side information. In this case, several codes were proposed and their mean code lengths were analyzed. However, there was no research about the overflow probability. We shall show two lemmas about the overflow probability. Then we obtain the condition that there exists a FV code under the condition that the overflow probability is smaller than or equal to some constant.