The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ryoichi TAKASHIMA(2hit)

1-2hit
  • Noise-Robust Voice Conversion Based on Sparse Spectral Mapping Using Non-negative Matrix Factorization

    Ryo AIHARA  Ryoichi TAKASHIMA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER-Voice Conversion and Speech Enhancement

      Vol:
    E97-D No:6
      Page(s):
    1411-1418

    This paper presents a voice conversion (VC) technique for noisy environments based on a sparse representation of speech. Sparse representation-based VC using Non-negative matrix factorization (NMF) is employed for noise-added spectral conversion between different speakers. In our previous exemplar-based VC method, source exemplars and target exemplars are extracted from parallel training data, having the same texts uttered by the source and target speakers. The input source signal is represented using the source exemplars and their weights. Then, the converted speech is constructed from the target exemplars and the weights related to the source exemplars. However, this exemplar-based approach needs to hold all training exemplars (frames), and it requires high computation times to obtain the weights of the source exemplars. In this paper, we propose a framework to train the basis matrices of the source and target exemplars so that they have a common weight matrix. By using the basis matrices instead of the exemplars, the VC is performed with lower computation times than with the exemplar-based method. The effectiveness of this method was confirmed by comparing its effectiveness (in speaker conversion experiments using noise-added speech data) with that of an exemplar-based method and a conventional Gaussian mixture model (GMM)-based method.

  • Exemplar-Based Voice Conversion Using Sparse Representation in Noisy Environments

    Ryoichi TAKASHIMA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1946-1953

    This paper presents a voice conversion (VC) technique for noisy environments, where parallel exemplars are introduced to encode the source speech signal and synthesize the target speech signal. The parallel exemplars (dictionary) consist of the source exemplars and target exemplars, having the same texts uttered by the source and target speakers. The input source signal is decomposed into the source exemplars, noise exemplars and their weights (activities). Then, by using the weights of the source exemplars, the converted signal is constructed from the target exemplars. We carried out speaker conversion tasks using clean speech data and noise-added speech data. The effectiveness of this method was confirmed by comparing its effectiveness with that of a conventional Gaussian Mixture Model (GMM)-based method.