The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ryosuke SHIBASAKI(2hit)

1-2hit
  • Evaluation of Satellite-Based Navigation Services in Complex Urban Environments Using a Three-Dimensional GIS

    YongCheol SUH  Ryosuke SHIBASAKI  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E90-B No:7
      Page(s):
    1816-1825

    We developed a comprehensive simulation system for evaluating satellite-based navigation services in highly built-up areas; the system can accommodate Global Positioning System (GPS) multipath effects, as well as line-of-sight (LOS) and dilution of position (DOP) issues. For a more realistic simulation covering multipath and diffracted signal propagations, a 3D-ray tracing method was combined with a satellite orbit model and three-dimensional (3D) geographic information system (GIS) model. An accuracy estimation model based on a 3D position determination algorithm with a theoretical delay-locked loop (DLL) correlation computation could measure the extent to which multipath mitigation improved positioning accuracy in highly built-up areas. This system could even capture the multipath effect from an invisible satellite, one of the greatest factors in accuracy deterioration in highly built-up areas. Further, the simulation results of satellite visibility, DOP, and multipath occurrence were mapped to show the spatial distribution of GPS availability. By using object-oriented programming, our simulation system can be extended to other global navigation satellite systems (GNSSs) simply by adding the orbital information of the corresponding GNSS satellites. We demonstrated the applicability of our simulation system in an experimental simulation for Shinjuku, an area of Tokyo filled with skyscrapers.

  • Reconstruction of Textured Urban 3D Model by Fusing Ground-Based Laser Range and CCD Images

    Huijing ZHAO  Ryosuke SHIBASAKI  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1429-1440

    In this paper, a method of fusing ground-based laser range image and CCD images for the reconstruction of textured 3D urban object is proposed. An acquisition system is developed to capture laser range image and CCD images simultaneously from the same platform. A registration method is developed using both laser range and CCD images in a coarse-to-fine process. Laser range images are registered with an assumption on sensor's setup, which aims at robustly detecting an initial configuration between the sensor's coordinate system of two views. CCD images are matched to refine the accuracy of the initial transformation, which might be degraded by improper sensor setup, unreliable feature extraction, or limited by low spatial resolution of laser range image. Textured 3D model is generated using planar faces for vertical walls and triangular cells for ground surface, trees and bushes. Through an outdoor experiment of reconstructing a building using six views of laser range and CCD images, it is demonstrated that textured 3D model of urban objects can be generated in an automated manner.