1-3hit |
Ryu ISHII Kyosuke YAMASHITA Zihao SONG Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
Fault-tolerant aggregate signature (FT-AS) is a special type of aggregate signature that is equipped with the functionality for tracing signers who generated invalid signatures in the case an aggregate signature is detected as invalid. In existing FT-AS schemes (whose tracing functionality requires multi-rounds), a verifier needs to send a feedback to an aggregator for efficiently tracing the invalid signer(s). However, in practice, if this feedback is not responded to the aggregator in a sufficiently fast and timely manner, the tracing process will fail. Therefore, it is important to estimate whether this feedback can be responded and received in time on a real system. In this work, we measure the total processing time required for the feedback by implementing an existing FT-AS scheme, and evaluate whether the scheme works without problems in real systems. Our experimental results show that the time required for the feedback is 605.3 ms for a typical parameter setting, which indicates that if the acceptable feedback time is significantly larger than a few hundred ms, the existing FT-AS scheme would effectively work in such systems. However, there are situations where such feedback time is not acceptable, in which case the existing FT-AS scheme cannot be used. Therefore, we further propose a novel FT-AS scheme that does not require any feedback. We also implement our new scheme and show that a feedback in this scheme is completely eliminated but the size of its aggregate signature (affecting the communication cost from the aggregator to the verifier) is 144.9 times larger than that of the existing FT-AS scheme (with feedbacks) for a typical parameter setting, and thus has a trade-off between the feedback waiting time and the communication cost from the verifier to the aggregator with the existing FT-AS scheme.
Ryu ISHII Kyosuke YAMASHITA Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
Aggregate signature schemes enable us to aggregate multiple signatures into a single short signature. One of its typical applications is sensor networks, where a large number of users and devices measure their environments, create signatures to ensure the integrity of the measurements, and transmit their signed data. However, if an invalid signature is mixed into aggregation, the aggregate signature becomes invalid, thus if an aggregate signature is invalid, it is necessary to identify the invalid signature. Furthermore, we need to deal with a situation where an invalid sensor generates invalid signatures probabilistically. In this paper, we introduce a model of aggregate signature schemes with interactive tracing functionality that captures such a situation, and define its functional and security requirements and propose aggregate signature schemes that can identify all rogue sensors. More concretely, based on the idea of Dynamic Traitor Tracing, we can trace rogue sensors dynamically and incrementally, and eventually identify all rogue sensors of generating invalid signatures even if the rogue sensors adaptively collude. In addition, the efficiency of our proposed method is also sufficiently practical.
Kyosuke YAMASHITA Ryu ISHII Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
A fault-tolerant aggregate signature (FT-AS) scheme is a variant of an aggregate signature scheme with the additional functionality to trace signers that create invalid signatures in case an aggregate signature is invalid. Several FT-AS schemes have been proposed so far, and some of them trace such rogue signers in multi-rounds, i.e., the setting where the signers repeatedly send their individual signatures. However, it has been overlooked that there exists a potential attack on the efficiency of bandwidth consumption in a multi-round FT-AS scheme. Since one of the merits of aggregate signature schemes is the efficiency of bandwidth consumption, such an attack might be critical for multi-round FT-AS schemes. In this paper, we propose a new multi-round FT-AS scheme that is tolerant of such an attack. We implement our scheme and experimentally show that it is more efficient than the existing multi-round FT-AS scheme if rogue signers randomly create invalid signatures with low probability, which for example captures spontaneous failures of devices in IoT systems.