The search functionality is under construction.

Author Search Result

[Author] S. J. Ben YOO(2hit)

1-2hit
  • The Role of Photonics in Future Computing and Data Centers Open Access

    S. J. Ben YOO  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1272-1280

    This paper covers new architectures, technologies, and performance benchmarking together with prospects for high productivity and high performance computing enabled by photonics. The exponential and sustained increases in computing and data center needs are driving the demands for exascale computing in the future. Power-efficient and parallel computing with balanced system design is essential for reaching that goal as should support ∼billion total concurrencies and ∼billion core interconnections with ∼exabyte/second bisection bandwidth. Photonic interconnects offer a disruptive technology solution that fundamentally changes the computing architectural design considerations. Optics provide ultra-high throughput, massive parallelism, minimal access latencies, and low power dissipation that remains independent of capacity and distance. In addition to the energy efficiency and many of the fundamental physical problems, optics will bring high productivity computing where programmers can ignore locality between billions of processors and memory where data resides. Repeaterless interconnection links across the entire computing system and all-to-all massively parallel interconnection switch will significantly transform not only the hardware aspects of computing but the way people program and harness the computing capability. This impacts programmability and productivity of computing. Benchmarking and optimization of the configuration of the computing system is very important. Practical and scalable deployment of photonic interconnected computing systems are likely to be aided by emergence of athermal silicon photonics and hybrid integration technologies.

  • Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric Open Access

    Roberto PROIETTI  Xian XIAO  Marjan FARIBORZ  Pouya FOTOUHI  Yu ZHANG  S. J. Ben YOO  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1190-1198

    This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.