1-1hit |
Many discrete functions are often compactly represented by Decision Diagrams (DD). The main problem in the construction of decision diagrams is the space and time requirements. While constructing a decision diagram the memory requirement may grow exponentially with the function. Also, large numbers of temporary nodes are created while constructing the decision diagram for a function. Here the problem of reducing the number of temporary nodes is addressed with respect to the PLA specification format of a function, where the function is represented using a set of cubes. Usually a DD is constructed by recursively processing the input cubes in the PLA specification. The DD, representing a sub function, is specified by a single cube. This DD is merged with a master DD, which represents the entire previously processed cubes. Thus the master DD is constructed recursively, until all the cubes in the input cube set are processed. In this paper, an efficient method is proposed, which reorders and also partitions the cube set into unequal number of cubes per subset, in such a way that, the number of temporary nodes created and the number of logical operations done, during the merging of cubes with the master DD are reduced. This results in the reduction of space and time required for the construction of DDs to a remarkable extent.