The search functionality is under construction.

Author Search Result

[Author] Saeko KUSANOBU(3hit)

1-3hit
  • A Practical Approach for the Fixed-Point Homotopy Method Using a Solution-Tracing Circuit

    Yasuaki INOUE  Saeko KUSANOBU  Kiyotaka YAMAMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E85-A No:1
      Page(s):
    222-233

    Finding DC operating-points of nonlinear circuits is an important and difficult task. The Newton-Raphson method employed in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. The fixed-point homotopy method is one of the excellent methods. However, from the viewpoint of implementation, it is important to study it further so that the method can be easily and widely used by many circuit designers. This paper presents a practical method to implement the fixed-point homotopy method. A special circuit called the solution-tracing circuit for the fixed-point homotopy method is proposed. By using this circuit, the solution curves of homotopy equations can be traced by performing the SPICE transient analysis. Therefore, no modification to the existing programs is necessary. Moreover, it is proved that the proposed method is globally convergent. Numerical examples show that the proposed technique is effective and can be easily implemented. By the proposed technique, many SPICE users can easily implement the fixed-point homotopy method.

  • An Initial Solution Algorithm for Globally Convergent Homotopy Methods

    Yasuaki INOUE  Saeko KUSANOBU  Kiyotaka YAMAMURA  Makoto ANDO  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    780-786

    Finding DC operating points of transistor circuits is an important and difficult task. The Newton-Raphson method adopted in SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. For efficiency of globally convergent homotopy methods, it is important to give an appropriate initial solution as a starting point. However, there are few studies concerning such initial solution algorithms. In this paper, initial solution problems in homotopy methods are discussed, and an effective initial solution algorithm is proposed for globally convergent homotopy methods, which finds DC operating points of transistor circuits efficiently. Numerical examples using practical transistor circuits show the effectiveness of the proposed algorithm.

  • Theorems on the Unique Initial Solution for Globally Convergent Homotopy Methods

    Yasuaki INOUE  Saeko KUSANOBU  

     
    PAPER-Numerical Calculation

      Vol:
    E86-A No:9
      Page(s):
    2184-2191

    Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. For the global convergence of homotopy methods, it is a necessary condition that a given initial solution is the unique solution to the homotopy equation. According to the conventional criterion, such an initial solution, however, is restricted in some very narrow region. In this paper, considering the circuit interpretation of homotopy equations, we prove theorems on the uniqueness of an initial solution for globally convergent homotopy methods. These theorems give new criteria extending the region wherein any desired initial solution satisfies the uniqueness condition.