The search functionality is under construction.

Author Search Result

[Author] Sang Il KWAK(2hit)

1-2hit
  • Active Frequency Selective Surfaces Using Incorporated PIN Diodes

    Kihun CHANG  Sang il KWAK  Young Joong YOON  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:12
      Page(s):
    1917-1922

    In this paper, active frequency selective surfaces (FSS) having a squared aperture with a metal plate loading are described. Active FSS elements using switched PIN diodes are discussed with an equivalent circuit model. A unit cell consists of a square aperture element with metal island loading and one PIN diode placed at the upper gap, considering the vertical polarization. The electromagnetic properties of the active FSS structure are changed by applying dc bias to the substrate, and they can be estimated by the equivalent circuit model of the FSS structure and PIN diode. This active FSS design enables transmission to be switched on or off at 2.3 GHz, providing high transmission when the diodes are in an off state and high isolation when the diodes are on. The equivalent circuit model in the structure is investigated by analyzing transmission and reflection spectra. Measurements on active FSS are compared with numerical calculations. The experimentally observed frequency responses are also scrutinized.

  • Novel Electromagnetic Bandgap with Triangular Unit Cells for Ultra-Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Dong Uk SIM  Sang Il KWAK  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:6
      Page(s):
    2356-2358

    To build a stable power distribution network for high-speed digital systems, simultaneous switching noise (SSN) should be sufficiently suppressed in multi-layer PCBs and packages. In this paper, a novel hybrid uni-planar compact electromagnetic bandgap (UC-EBG) with two triangular-type unit cells designed on power/ground planes is proposed for the ultra-broadband suppression of SSN. The SSN suppression performance of the proposed structure is validated both numerically and experimentally. A -35 dB suppression bandwidth for SSN is achieved, starting at 800 MHz and extending to 15 GHz and beyond, thereby covering almost the entire noise band.