The search functionality is under construction.

Author Search Result

[Author] Sang-Gyu PARK(5hit)

1-5hit
  • Intra-Channel Nonlinearities and Dispersion-Management in Highly Dispersed Transmission

    Sang-Gyu PARK  Je-Myung JEONG  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E86-B No:4
      Page(s):
    1205-1211

    This study is a detailed numerical investigation on the relations between the performance of the RZ format single-channel transmission, and the chromatic dispersion of transmission fiber and pre-compensation ratio. We observed the transition from the SPM dominant low dispersion region to the intra-channel nonlinearities dominant high dispersion region, and found that the EOP is very sensitive to the pre-compensation ratio when the dispersion assumes a intermediate value. Furthermore, by analyzing the optical power-dependence of the EOP and other nonlinear impairments, we found that the amplitude fluctuation resulting from IFWM is dominant in determining the EOP in the transmission systems employing highly dispersed pulses.

  • A Per-User QoS Enhancement Strategy via Downlink Cooperative Transmission Using Distributed Antennas

    Byungseok LEE  Ju Wook JANG  Sang-Gyu PARK  Wonjin SUNG  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3538-3541

    In this letter, we address a strategy to enhance the signal-to-interference plus noise ratio (SINR) of the worst-case user by using cooperative transmission from a set of geographically separated antennas. Unlike previously reported schemes which are based on either the power control of individual antennas or cooperative orthogonal transmission, the presented strategy utilizes the minimum-mean-squared error (MMSE) filter structure for beamforming, which provides increased robustness to the external interference as well as the background noise at the receiver. By iteratively updating the cooperative transmission beamforming vector and power control (PC), the balanced SINR is obtained for all users, while the transmission power from each antenna also converges to within the constrained value. It is demonstrated that proposed MMSE beamforming significantly outperforms other existing schemes in terms of the achievable minimum SINR.

  • A High-Performance Videophone Chip with Dual Multimedia VLIW Processor Cores

    Jeong-Min KIM  Yun-Su SHIN  In-Gu HWANG  Kwang-Sun LEE  Sang-Il HAN  Sang-Gyu PARK  Soo-Ik CHAE  

     
    PAPER

      Vol:
    E84-C No:2
      Page(s):
    183-192

    A chip is described that integrates two multimedia VLIW processor cores with a hardware streaming engine. It can implement a real-time videophone, or an MPEG4 codec. Each processor core has identical resources, and shares the memory and system I/O interface units. With its symmetric structure, applications can be executed on either processor without constraints. To accelerate multimedia-specific applications, the architecture of this processor has several features. It merges the features of a RISC and a DSP, its instruction set is extended to accelerate both video and audio applications, and it supports an efficient embedded memory system, to reduce both the bandwidth and the latency for multimedia applications needing frequent memory accesses. The chip size will be 100 mm2 die that contains 700 K logic gates, 60 KB RAM, and 16 KB ROM, in a 0.25-µm CMOS standard cell technology. At 65 MHz operating frequency, it can process H.263 video coding at CIF 15 frames/sec, and G.723.1 audio coding with an 80% processing time allocation.

  • Capacity of Sectorized Distributed Networks Employing Adaptive Collaboration from Remote Antennas

    Jonghyun PARK  Ju Wook JANG  Sang-Gyu PARK  Wonjin SUNG  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3534-3537

    Distributed networks employing collaborative transmission (CT) from remote antennas can provide improved system capacity and cell-edge performance, by using appropriate transmission strategies. When compared to conventional non-collaborative transmission (NCT) from one base station (BS), we show that CT from two adjacent BSs can be beneficial in terms of the capacity, even when the transmission rate is normalized by the number of collaborating BSs. We further demonstrate that performing adaptive transmission (AT) between NCT and CT based on the instantaneous channel conditions provide an additional gain in capacity. The exact amount of achievable gain is quantified by the closed-form formula for the capacity distribution, which is derived using the Jacobian transformation. The presented distribution is immediately applicable to 6-sectored distributed cellular network, for which we present numerical verification of the results.

  • Performance of an APSK Receiver with Electronic Switches for the Reduction of SPM-Induced Impairments

    Sang-Gyu PARK  Jesoo KO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:3
      Page(s):
    508-515

    The performance of a new APSK receiver is analyzed using numerical simulation. The proposed receiver eliminates the penalty caused by SPM-induced phase-shift of optical pulses by employing three sub-modules and an amplitude-pattern controlled switch for each DPSK tributary. The interplay between SPM, IXPM, and XPM determines the performance of the proposed receiver for single-channel and WDM transmission.