The search functionality is under construction.

Author Search Result

[Author] Sangchoon KIM(13hit)

1-13hit
  • Channel Scaling-Based Transmit Antenna Selection for 2-Dimensional Rake Combining Spatial Multiplexing UWB MIMO Systems

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2061-2065

    In this letter, a fast transmit antenna selection algorithm is proposed for the spatial-temporal combining-based spatial multiplexing ultra-wideband systems on a log-normal multipath fading channel. The presented suboptimum algorithm selects the transmit antennas associated with the largest signal to noise ratio value computed by one QR decomposition operation of the full channel matrix spatially and temporally combined. It performs the iterative channel scaling operation about the channel matrix and singular value decomposition about the channel scaled matrix. It is shown that the proposed antenna selection algorithm leads to a substantial improvement in the error performance while keeping low-complexity, and obtains almost the same error performance as the exhaustive search-based optimal antenna selection algorithm.

  • Reliability of Generalized Normal Laplacian Distribution Model in TH-BPSK UWB Systems

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E94-A No:8
      Page(s):
    1772-1775

    In this letter, the reliabilty of the generalized normal-Laplace (GNL) distribution used for modeling the multiple access interference (MAI) plus noise in time-hopping (TH) binary phase-shift keying (BPSK) ultra-wideband (UWB) systems is evaluated in terms of the probability density function and the BER. The multiple access performance of TH-BPSK UWB systems based on GNL model is analyzed. The average BER performance obtained by using GNL approximation well matches with the exact BER results of TH-BPSK UWB systems. The parameter estimates of GNL distribution based on the moments estimation method is also presented.

  • QR Decomposition-Based Antenna Selection for Spatial Multiplexing UWB Systems with Zero-Forcing Detectors Followed by Rake Combiners

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    337-340

    This letter presents a criterion for selecting a transmit antenna subset when ZF detectors followed by Rake combiners are employed for spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output (MIMO) systems. The presented criterion is based on the largest minimum post-processing signal to interference plus noise ratio of the multiplexed streams, which is obtained on the basis of QR decomposition. Simulation results show that the proposed antenna selection algorithm considerably improves the BER performance of the SM UWB MIMO systems when the number of multipath diversity branches is not so large and thus offers diversity advantages on a log-normal multipath fading channel.

  • Performance Analysis of Downlink Beamforming in FDD DS-CDMA Systems

    Sangchoon KIM  Younggoo KWON  Bongsoon KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    1007-1011

    In this letter, the effects of transmit beamforming on downlink performance in DS-CDMA communication systems are examined. We present a simple-to-use expression for the conditional instantaneous SINR after Rake combining. Assuming BPSK modulation, the performance of average bit error rate is evaluated. We compare the average BER performance obtained by different beamforming methods under frequency selective multipath fading channels.

  • An ML Timing Estimator in UWB Communication Systems

    Sangchoon KIM  Kyoungsoo SON  Bongsoon KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    339-342

    The problem of estimating the timing of ultra-wide band signal is considered in the letter. We develop a maximum likelihood timing estimation algorithm for binary PAM DS-UWB systems. The derivation of the proposed algorithm is based on the known training sequence and AWGN channel. The Cramer-Rao Bound (CRB) for the ML timing estimator is presented as a performance benchmark. It is found via numerical results that the ML timing estimator on AWGN channels achieves the CRB when the values of Eb/N0 for the observation bits Nb=50 are sufficiently high. Finally, the performance of the proposed ML estimator is evaluated on actual channels with intersymbol interference such as an IEEE UWB indoor multipath channel model.

  • On the Performance of Code Acquisition in MIMO CDMA Systems

    Sangchoon KIM  Jinyoung AN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    628-632

    This letter investigates the effects of using multiple transmit antennas on code acquisition for preamble search in the CDMA uplink when MIMO is used for signal transmission and reception. The performance of a ML code acquisition technique in the presence of MIMO channel is analyzed by considering the detection and miss probabilities. The acquisition performance is numerically evaluated on a frequency selective fading channel. It is found that the performance of code acquisition scheme for a SIMO system is better than that for the case of MIMO on the low thresholds in terms of detection performance and MAT.

  • Approximate Maximum Likelihood Approach for Code Acquisition in DS-CDMA Systems with Multiple Antennas

    Sangchoon KIM  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:3
      Page(s):
    1054-1065

    The problem of estimating code timings in DS-CDMA systems with multiple antennas is considered in the presence of multipath time-varying fading channels and near-far environments. We present an efficient algorithm for an approximate maximum likelihood approach of jointly estimating the multipath timings of a desired user for DS-CDMA systems that consist of multiple antennas either uncorrelated or fully correlated in space. The procedures of the algorithm to estimate code-timings are developed in order to better exploit the time-varying characteristics of the fading process. In the multipath fading channels, the solution of the proposed algorithms is based on successively optimizing the criterion for increasing numbers of multipath delays. It is shown via simulation results that the modified approaches of the approximate maximum likelihood algorithm much more improve its acquisition performance in the time-varying fading channels. It is seen that the acquisition performance of multiple antennas based acquisition scheme is much better than that of a single antenna based timing estimator in the presence of multipath fading channels and the near-far problem. Furthermore, it is observed that the proposed algorithms outperform the correlator and MUSIC estimator in the multiuser environments with near-far situation on time-varying Rayleigh fading channels.

  • Prerake Combining-Based Transmit Diversity UWB Systems with Pulse Amplitude and Position Modulation

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2903-2907

    In this letter, a prerake combining scheme for signal detection in ultra-wideband (UWB) multiple input single output (MISO) systems with a hybrid pulse amplitude and position modulation (PAPM) is analytically examined. For a UWB MISO system, the analytical BER performance of a prerake combining scheme with PAPM is presented in a log-normal multipath fading channel. The analytical BERs are observed to match well the simulated results for the set of parameters chosen. The prerake diversity combining UWB systems, which can significantly reduce the complexity of the receiver side compared to the rake diversity systems, improve the error performance as the number of transmit antennas increases.

  • Code Acquisition Performance in Correlated MIMO Channel

    Sangchoon KIM  Jinyoung AN  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E92-A No:2
      Page(s):
    547-555

    In this paper, the impacts of using multiple transmit antennas under doubly correlated MIMO channels on CDMA uplink code acquisition is studied. The performance of a MIMO code acquisition system is analyzed by considering spatial fading correlations, which depend on antenna spacing and azimuth spread at both MS and BS. The detection performance and mean acquisition time in the presence of spatially correlated MIMO channel are presented on a frequency selective fading channel and compared with the cases of spatial fading decorrelation via numerical evaluation. It is observed that the acquisition performance relies on the degree of spatial fading correlations. In addition, it is surprisingly seen that a MIMO code acquisition system provides worse performance than SIMO.

  • Diversity Precoding for UWB MISO Systems in IEEE Channel Models

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:2
      Page(s):
    875-878

    In this letter, we consider a diversity precoding scheme for signal detection in ultra-wideband (UWB) multiple input single output (MISO) systems, which consists of linear diversity prefilters in the transmitter. For a UWB MISO system, the BER performance of a linear transmit diversity precoding system with imperfect channel estimation is presented in IEEE 802.15.3a UWB multipath channels and also compared with that of a linear receive diversity postcoding approach. It is shown that the diversity precoding UWB MISO system offers the performance equivalent to the diversity postcoding scheme for single input multiple output (SIMO) systems while making the mobiles low-cost and low-power.

  • Spatial-Temporal Combining-Based ZF Detection in Ultra-Wideband Communications

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E92-A No:7
      Page(s):
    1727-1730

    The performance of ultra-wideband (UWB) multiple input multiple output (MIMO) receiver based on the RAKE maximal ratio combiner (MRC) followed by a zero forcing (ZF) detector is analytically examined. For a UWB MIMO system with NT transmit antennas, NR receive antennas, and L resolvable multipath components, the proposed MIMO detection scheme is shown to have the diversity order of LNR-NT+1 and its analytical error rate expression is presented in a log-normal fading channel. We also compare the analytical BERs with the simulated results.

  • Error Performance of Prerake Diversity Combining-Based UWB Spatial Multiplexing MIMO Systems over Indoor Wireless Channels

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2817-2821

    In this letter, we consider a novel ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) structure, which consists of prerake diversity combiners in the transmitter and a zero forcing (ZF) detector in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and L resolvable multipath components, it is shown that the proposed prerake combining-based MIMO detection scheme has the diversity order of (LN-M+1) and its BER performance is analytically presented in a log-normal fading channel and also compared with that of a rake combining-based ZF scheme.

  • Transmit Antenna Selection for Spatial Multiplexing UWB MIMO Systems Using Sorted QR Decomposition

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:8
      Page(s):
    1426-1429

    In this letter, a post-detection signal to noise ratio (SNR) is considered for transmit antenna selection, when a sorted QR decomposition (SQRD) algorithm is used for signal detection in spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output systems. The post-detection SNR expression is obtained using a QR factorization algorithm based on a sorted Gram-Schmidt process. The employed antenna selection criterion is to utilize the largest minimum post-detection SNR value. It is shown via simulations that the antenna selection significantly enhances the BER performance of the SQRD-based SM UWB systems on a log-normal multipath fading channel.