1-3hit |
Jian SHEN Sangman MOH Ilyong CHUNG
Delay Tolerant Networks (DTNs) are a class of emerging networks that experience frequent and long-duration partitions. Delay is inevitable in DTNs, so ensuring the validity and reliability of the message transmission and making better use of buffer space are more important than concentrating on how to decrease the delay. In this paper, we present a novel routing protocol named Location and Direction Aware Priority Routing (LDPR) for DTNs, which utilizes the location and moving direction of nodes to deliver a message from source to destination. A node can get its location and moving direction information by receiving beacon packets periodically from anchor nodes and referring to received signal strength indicator (RSSI) for the beacon. LDPR contains two schemes named transmission scheme and drop scheme, which take advantage of the nodes' information of the location and moving direction to transmit the message and store the message into buffer space, respectively. Each message, in addition, is branded a certain priority according to the message's attributes (e.g. importance, validity, security and so on). The message priority decides the transmission order when delivering the message and the dropping sequence when the buffer is full. Simulation results show that the proposed LDPR protocol outperforms epidemic routing (EPI) protocol, prioritized epidemic routing (PREP) protocol, and DTN hierarchical routing (DHR) protocol in terms of packet delivery ratio, normalized routing overhead and average end-to-end delay. It is worth noting that LDPR doesn't need infinite buffer size to ensure the packet delivery ratio as in EPI. In particular, even though the buffer size is only 50, the packet delivery ratio of LDPR can still reach 93.9%, which can satisfy general communication demand. We expect LDPR to be of greater value than other existing solutions in highly disconnected and mobile networks.
Huiyao ZHENG Jian SHEN Youngju CHO Chunhua SU Sangman MOH
Cloud computing is a unlimited computing resource and storing resource, which provides a lot of convenient services, for example, Internet and education, intelligent transportation system. With the rapid development of cloud computing, more and more people pay attention to reducing the cost of data management. Data sharing is a effective model to decrease the cost of individuals or companies in dealing with data. However, the existing data sharing scheme cannot reduce communication cost under ensuring the security of users. In this paper, an anonymous and traceable data sharing scheme is presented. The proposed scheme can protect the privacy of the user. In addition, the proposed scheme also can trace the user uploading irrelevant information. Security and performance analyses show that the data sharing scheme is secure and effective.
Christian Henry Wijaya OEY Sangman MOH
One of the most important requirements for a routing protocol in wireless body area networks (WBANs) is to lower the network's temperature increase. The temperature of a node is closely related to its activities. The proactive routing approach, which is used by existing routing protocols for WBANs, tends to produce a higher temperature increase due to more frequent activities, compared to the on-demand reactive routing approach. In this paper, therefore, we propose a reactive routing protocol for WBANs called priority-based temperature-aware routing (PTR). In addition to lowering the temperature increase, the protocol also recognizes vital nodes and prioritizes them so they are able to achieve higher throughput. Simulation results show that the PTR protocol achieves a 50% lower temperature increase compared to the conventional temperature-aware routing protocol and is able to improve throughput of vital nodes by 35% when the priority mode is enabled.