The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Satoshi KINOSHITA(2hit)

1-2hit
  • New Sub-Band Adaptive Volterra Filter for Identification of Loudspeaker

    Satoshi KINOSHITA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1946-1955

    Adaptive Volterra filters (AVFs) are usually used to identify nonlinear systems, such as loudspeaker systems, and ordinary adaptive algorithms can be used to update the filter coefficients of AVFs. However, AVFs require huge computational complexity even if the order of the AVF is constrained to the second order. Improving calculation efficiency is therefore an important issue for the real-time implementation of AVFs. In this paper, we propose a novel sub-band AVF with high calculation efficiency for second-order AVFs. The proposed sub-band AVF consists of four parts: input signal transformation for a single sub-band AVF, tap length determination to improve calculation efficiency, switching the number of sub-bands while maintaining the estimation accuracy, and an automatic search for an appropriate number of sub-bands. The proposed sub-band AVF can improve calculation efficiency for which the dominant nonlinear components are concentrated in any frequency band, such as loudspeakers. A simulation result demonstrates that the proposed sub-band AVF can realize higher estimation accuracy than conventional efficient AVFs.

  • Understanding Conversational Sentences Using Multi-Paradigm World Knowledge

    Teruhiko UKITA  Satoshi KINOSHITA  Kazuo SUMITA  Hiroshi SANO  Shin'ya AMANO  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E75-D No:3
      Page(s):
    352-362

    Resolving ambiguities in interpreting the user's utterances is one of the most fundamental problems in the development of a question-answering system. The process of disambiguating interpretations requires knowledge and inference functions on an objective task field. This paper describes a framework for understanding conversational language, using the multi-paradigm knowledge representation (frames" and rules") which represents concept hierarchy and causal relationships for an objective field. Knowledge of the objective field is used in the process to interpret input sentences as a model for the objective world. In interpreting sentences, a procedure judges preferences for interpretation candidates by identifying causal relationship with messages in the preceding context, where the causal relationship is used to supplement some shortage of information and to give either an affirmative or a negative explanation to the interpretation. The procedure has been implemented in an experimental question-answering system, whose current task is consultation in operating an electronic device. The experimental results are shown for a concrete problem involving resolving anaphoric references, and characteristics of the knowledge processing system are discussed.