1-2hit |
Existing filtering methods of TCP ACK packets are known to be effective in reducing the required bandwidth, resulting in the improvement of TCP throughput. However, the methods cannot handle the filtering of piggyback ACK packets. Considering that most TCP applications require bidirectional data exchange, the lack of the functionality to deal with the piggyback ACK packets should be addressed. This paper proposes a novel filtering scheme for WiMAX systems that can handle the piggyback ACK packets. The novelty comes from the fact that the proposed method overlaps the processing time of packet merging with the round trip delay of the bandwidth request-and-grant procedure. It is advantageous because it does not require extra time for the merging. The results from an analytical model and simulations show that the required uplink bandwidth is decreased while the downlink throughput is increased.
Gwanggil JEON Young-Sup LEE SeokHoon KANG
An effective interlaced-to-progressive scanning format conversion method is presented for the interpolation of interlaced images. On the basis of the weight assignment algorithm, the proposed method is composed of three stages: (1) straightforward interpolation with pre-determined six-tap filter, (2) fuzzy metric-based weight assignment, (3) updating the interpolation results. We first deinterlace the missing line with six-tap filter in the working window. Then we compute the local weight among the adjacent pixels with a fuzzy metric. Finally we deinterlace the missing pixels using the proposed interpolator. Comprehensive simulations conducted on different images and video sequences have proved the effectiveness of the proposed method, with significant improvement over conventional methods.